

Group Equivariant Deep Learning

Lecture 2 - Steerable group convolutions

Lecture 2.1 - Steerable kernels/basis functions

Definition and $SO(2)$ example

Erik Bekkers, Amsterdam Machine Learning Lab, University of Amsterdam

This mini-course serves as a module with the UvA Master AI course Deep Learning 2 <https://uvadl2c.github.io/>

Group Equivariant Deep Learning

Lecture 2 - Steerable group convolutions

Lecture 2.1 - Steerable kernels/basis functions

Definition and $SO(2)$ example

Lecture 2.2 - Revisiting regular G-convs with steerable kernels | Template matching viewpoint

Motivating the Fourier transform on G and showing we now no longer need a grid on the sub-group H !

Lecture 2.3 - Group Theory | Irreducible representations and Fourier transform

Preliminaries for steerable feature fields and steerable g-conv intuition with a focus on $SO(2)$

Lecture 2.4 - Group Theory | Induced representations and feature fields

Preliminaries (and intuition) for steerable group convolutions

Lecture 2.5 - Steerable group convolutions

And how to use them

Lecture 2.6 - Activation functions for steerable G-CNNs

Examples of which we can and cannot use

Lecture 2.7 - Derivation of Harmonic networks¹ from regular g-convs | Recalling g-convs are all you need!

¹Worrall, D. E., Garbin, S. J., Turmukhambetov, D., & Brostow, G. J. Harmonic networks: Deep translation and rotation equivariance. CVPR 2017

Steerable basis

A vector $Y(x) = \begin{pmatrix} \vdots \\ Y_l(x) \\ \vdots \end{pmatrix} \in \mathbb{K}^L$ with (basis) functions $Y_l \in \mathbb{L}_2(X)$ is steerable if

$$\forall_{g \in G} : \quad Y(gx) = \rho(g)Y(x),$$

where gx denotes the action of G on X and $\rho(g) \in \mathbb{K}^{L \times L}$ is a representation of G .

I.e., we can transform all basis functions simply by taking a linear combination of the original basis functions.

Example: Steerable basis on S^1 (circular harmonics)

Basis functions (for $\mathbb{L}_2(S^1)$):

$$Y_l(\alpha) = e^{il\alpha}$$

Are steered by representations:

$$\rho_l(\theta) = e^{il\theta}$$

Proof:
$$\begin{aligned} Y_l(\alpha - \theta) &= e^{il(\alpha - \theta)} \\ &= e^{-il\theta} e^{il\alpha} \\ &= \rho_l(-\theta) Y_l(\alpha) \end{aligned}$$

Example: Steerable basis on S^1 (circular harmonics)

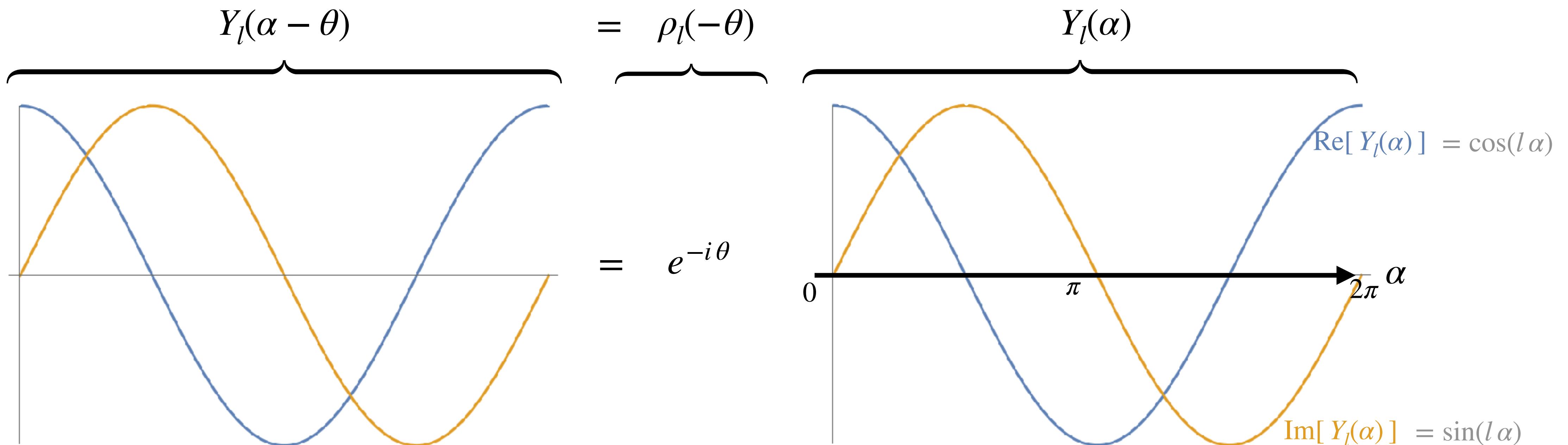
Basis functions (for $\mathbb{L}_2(S^1)$):

Are steered by representations:

$$Y_l(\alpha) = e^{il\alpha}$$

$$\rho_l(\theta) = e^{il\theta}$$

Proof: $Y_l(\alpha - \theta) = e^{il(\alpha - \theta)}$
 $= e^{-il\theta} e^{il\alpha}$
 $= \rho_l(-\theta) Y_l(\alpha)$



Example: Steerable basis on S^1 (circular harmonics)

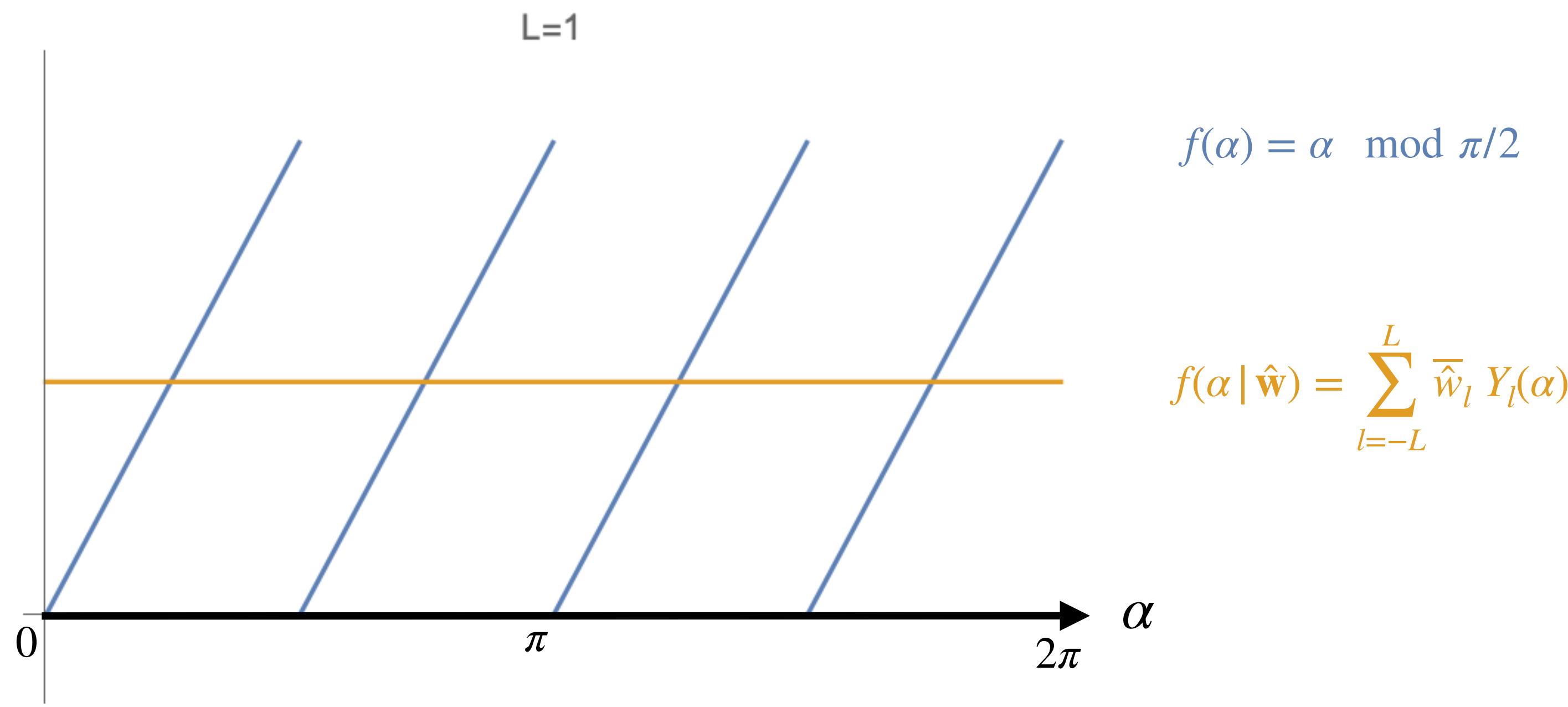
Basis functions (for $\mathbb{L}_2(S^1)$):

$$Y_l(\alpha) = e^{il\alpha}$$

Form a complete orthonormal (Fourier) basis:

$$f(\alpha | \hat{\mathbf{w}}) = \sum_{l=-\infty}^{\infty} \overline{\hat{w}_l} Y_l(\alpha)$$

Y_l are given by the irreps of $SO(2)$ and hence form orthogonal basis (Peter-Weyl Theorem)



Example: Steerable basis on S^1 (circular harmonics)

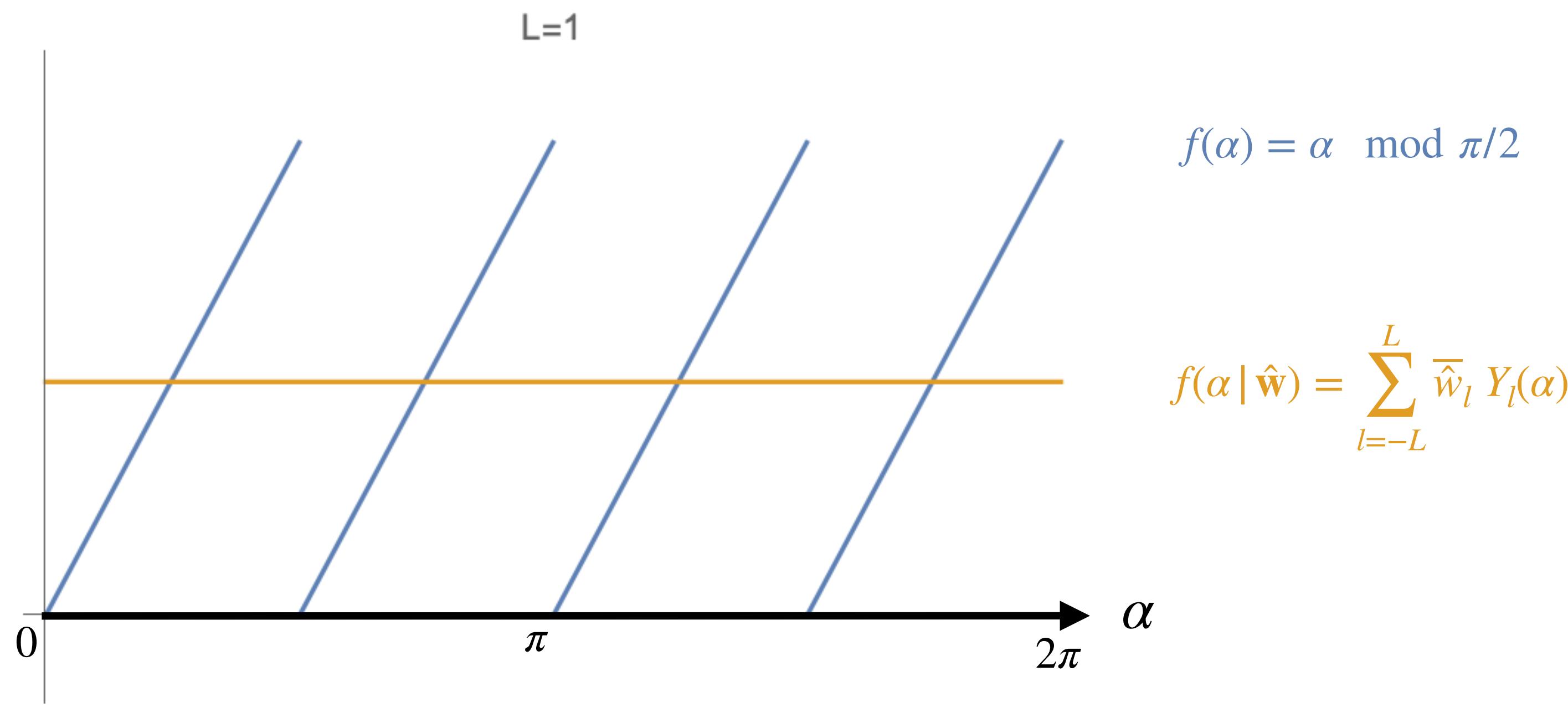
Basis functions (for $\mathbb{L}_2(S^1)$):

$$Y_l(\alpha) = e^{il\alpha}$$

Form a complete orthonormal (Fourier) basis:

$$f(\alpha | \hat{\mathbf{w}}) = \sum_{l=-\infty}^{\infty} \hat{w}_l \overline{Y}_l(\alpha)$$

Y_l are given by the irreps of $SO(2)$ and hence form orthogonal basis (Peter-Weyl Theorem)



Example: Steerable basis on S^1 (circular harmonics)

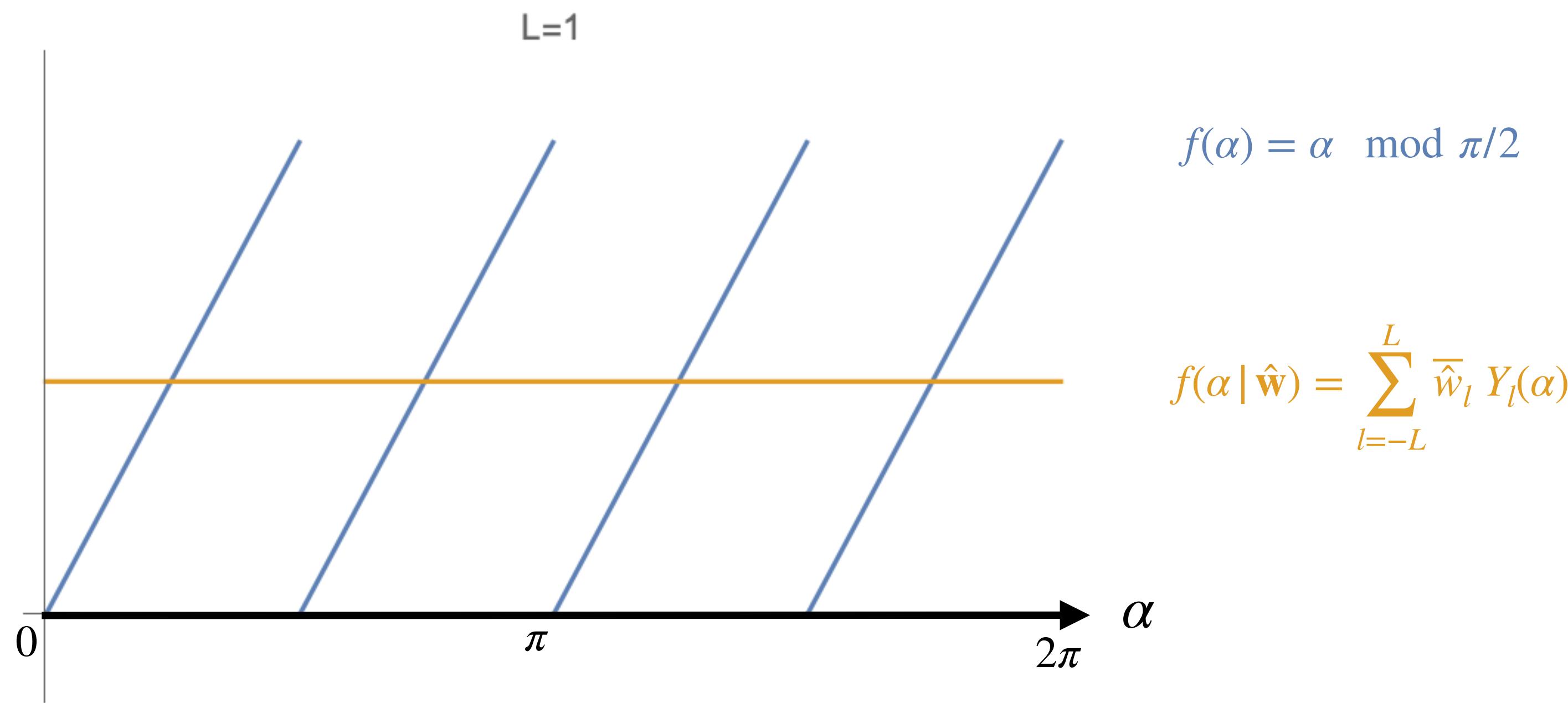
Basis functions (for $\mathbb{L}_2(S^1)$):

$$Y_l(\alpha) = e^{il\alpha}$$

Form a complete orthonormal (Fourier) basis:

$$f(\alpha | \hat{\mathbf{w}}) = \sum_{l=-\infty}^{\infty} \hat{w}_l Y_l(-\alpha)$$

Y_l are given by the irreps of $SO(2)$ and hence form orthogonal basis (Peter-Weyl Theorem)



Example: Steerable basis on S^1 (circular harmonics)

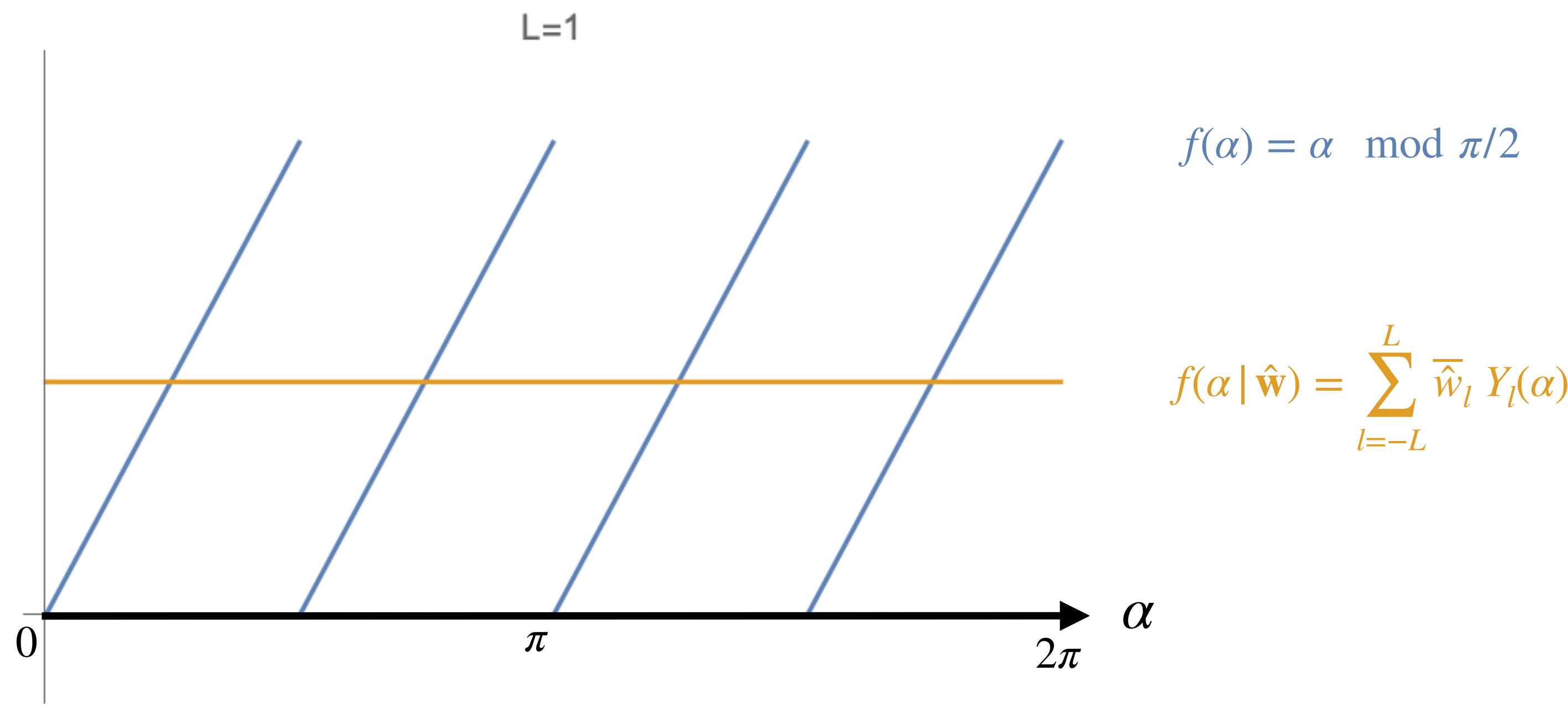
Basis functions (for $\mathbb{L}_2(S^1)$):

$$Y_l(\alpha) = e^{il\alpha}$$

Form a complete orthonormal (Fourier) basis:

$$f(\alpha | \hat{\mathbf{w}}) = \sum_{l=-\infty}^{\infty} \overline{\hat{w}_l} Y_l(\alpha)$$

Y_l are given by the irreps of $SO(2)$ and hence form orthogonal basis (Peter-Weyl Theorem)



Example: Steerable basis on S^1 (circular harmonics)

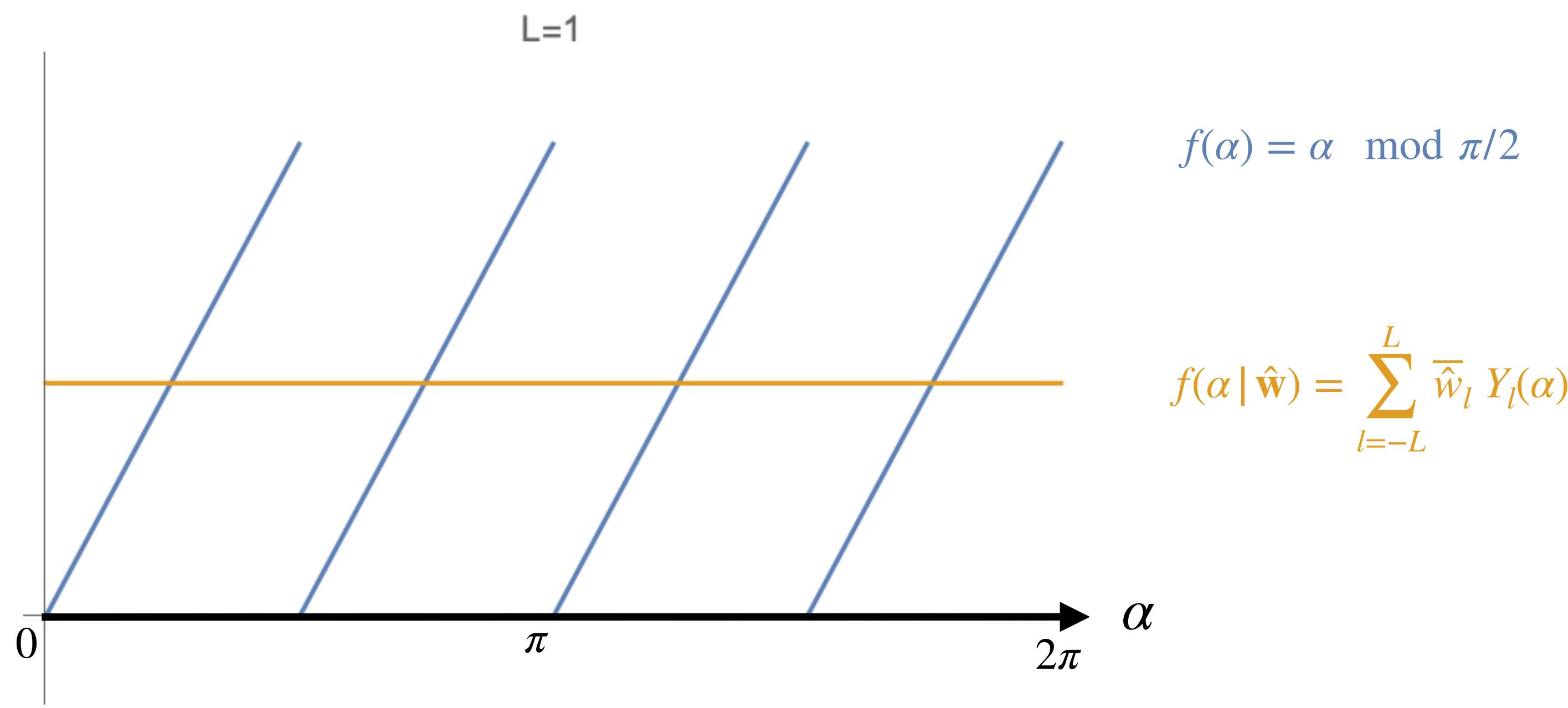
Basis functions (for $\mathbb{L}_2(S^1)$):

$$Y_l(\alpha) = e^{il\alpha}$$

Form a complete orthonormal (Fourier) basis:

$$f(\alpha | \hat{\mathbf{w}}) = \sum_{l=-\infty}^{\infty} \overline{\hat{w}_l} Y_l(\alpha)$$

Y_l are given by the irreps of $SO(2)$ and hence form orthogonal basis (Peter-Weyl Theorem)



Example: Steerable basis on S^1 (circular harmonics)

$$\begin{array}{c}
 Y(\alpha - \theta) \\
 \left(\begin{array}{c} \text{blue line} \\ \text{orange line} \\ \text{blue line} \\ \text{orange line} \\ \text{blue line} \\ \text{orange line} \\ \text{blue line} \\ \text{orange line} \end{array} \right) \\
 = \left(\begin{array}{cccccc} e^{i3\theta} & 0 & 0 & 0 & 0 & 0 \\ 0 & e^{i2\theta} & 0 & 0 & 0 & 0 \\ 0 & 0 & e^{i1\theta} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & e^{-i1\theta} & 0 \\ 0 & 0 & 0 & 0 & 0 & e^{-i2\theta} \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) \left(\begin{array}{c} \text{blue line} \\ \text{orange line} \\ \text{blue line} \\ \text{orange line} \\ \text{blue line} \\ \text{orange line} \\ \text{blue line} \\ \text{orange line} \end{array} \right) \\
 Y(\alpha)
 \end{array}$$

$\rho(-\theta) = \bigoplus_{l=-L}^L \rho_l(-\theta)$

Example: Steerable basis on S^1 (circular harmonics)

$$\begin{array}{c}
 Y(\alpha - \theta) \\
 \left(\begin{array}{c} \text{blue line} \\ \text{orange line} \\ \text{blue line} \\ \text{orange line} \\ \text{blue line} \\ \text{orange line} \\ \text{blue line} \\ \text{orange line} \end{array} \right) \\
 = \left(\begin{array}{cccccc} e^{i3\theta} & 0 & 0 & 0 & 0 & 0 \\ 0 & e^{i2\theta} & 0 & 0 & 0 & 0 \\ 0 & 0 & e^{i1\theta} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & e^{-i1\theta} & 0 \\ 0 & 0 & 0 & 0 & 0 & e^{-i2\theta} \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right) \left(\begin{array}{c} \text{blue line} \\ \text{orange line} \\ \text{blue line} \\ \text{orange line} \\ \text{blue line} \\ \text{orange line} \\ \text{blue line} \\ \text{orange line} \end{array} \right) \\
 Y(\alpha)
 \end{array}$$

$\rho(-\theta) = \bigoplus_{l=-L}^L \rho_l(-\theta)$

Example: Steerable basis on S^1 (circular harmonics)

Let

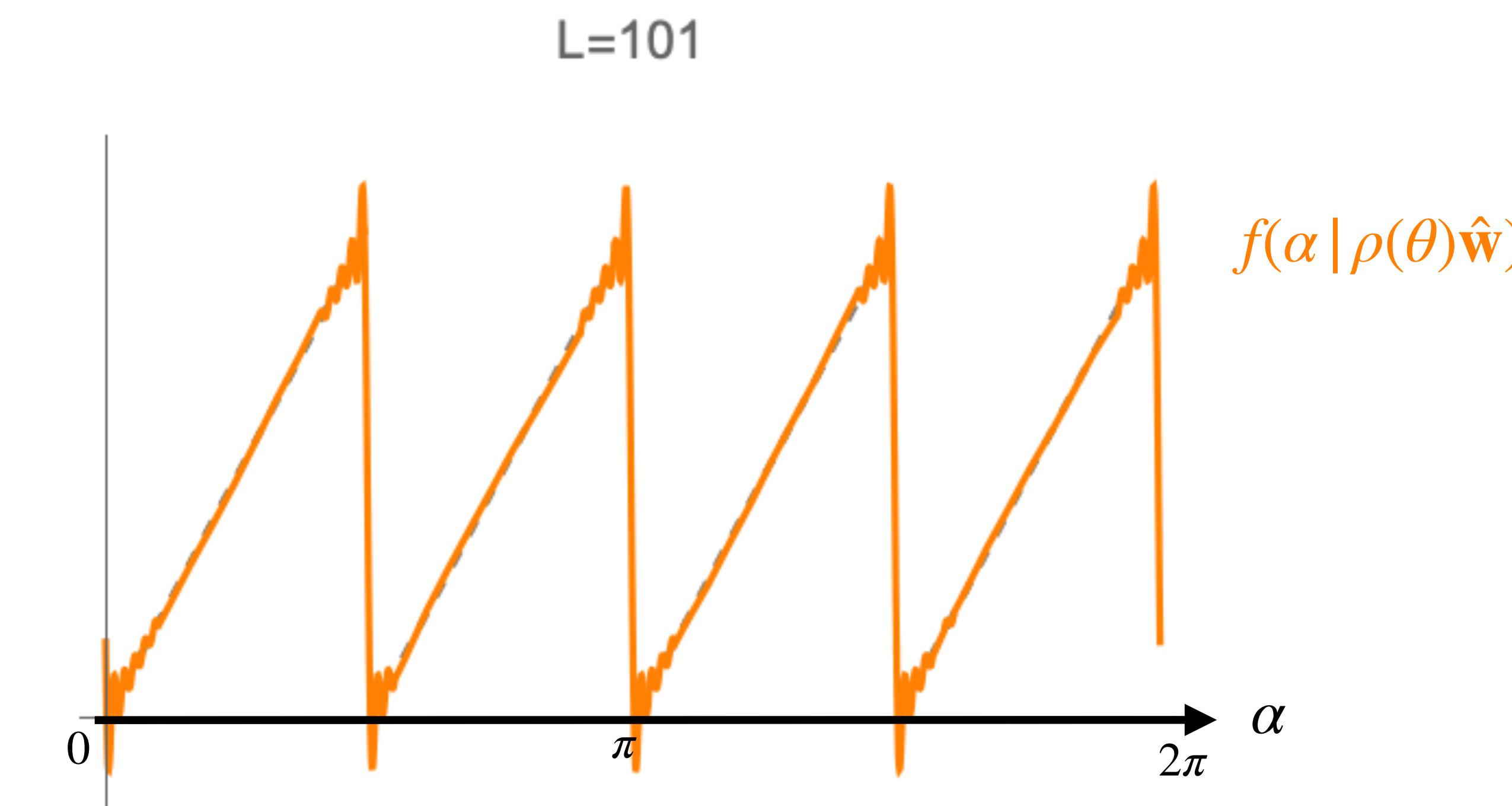
$$f(\alpha | \hat{\mathbf{w}}) = \hat{\mathbf{w}}^\dagger Y(\alpha)$$

Then we can **steer**/shift this function by transforming the weights $\hat{\mathbf{w}}$

$$f(\alpha - \theta | \hat{\mathbf{w}}) = f(\alpha | \rho(\theta)\hat{\mathbf{w}})$$

Proof:

$$\begin{aligned} f(\alpha - \theta | \hat{\mathbf{w}}) &= \hat{\mathbf{w}}^\dagger Y(\alpha - \theta) \\ &= \hat{\mathbf{w}}^\dagger \rho(-\theta) Y(\alpha) \\ &= \hat{\mathbf{w}}^\dagger \rho(\theta)^\dagger Y(\alpha) \\ &= (\rho(\theta)\hat{\mathbf{w}})^\dagger Y(\alpha) \\ &= f(\alpha | \rho(\theta)\hat{\mathbf{w}}) \end{aligned}$$



Example: Steerable basis on S^1 (circular harmonics)

Let

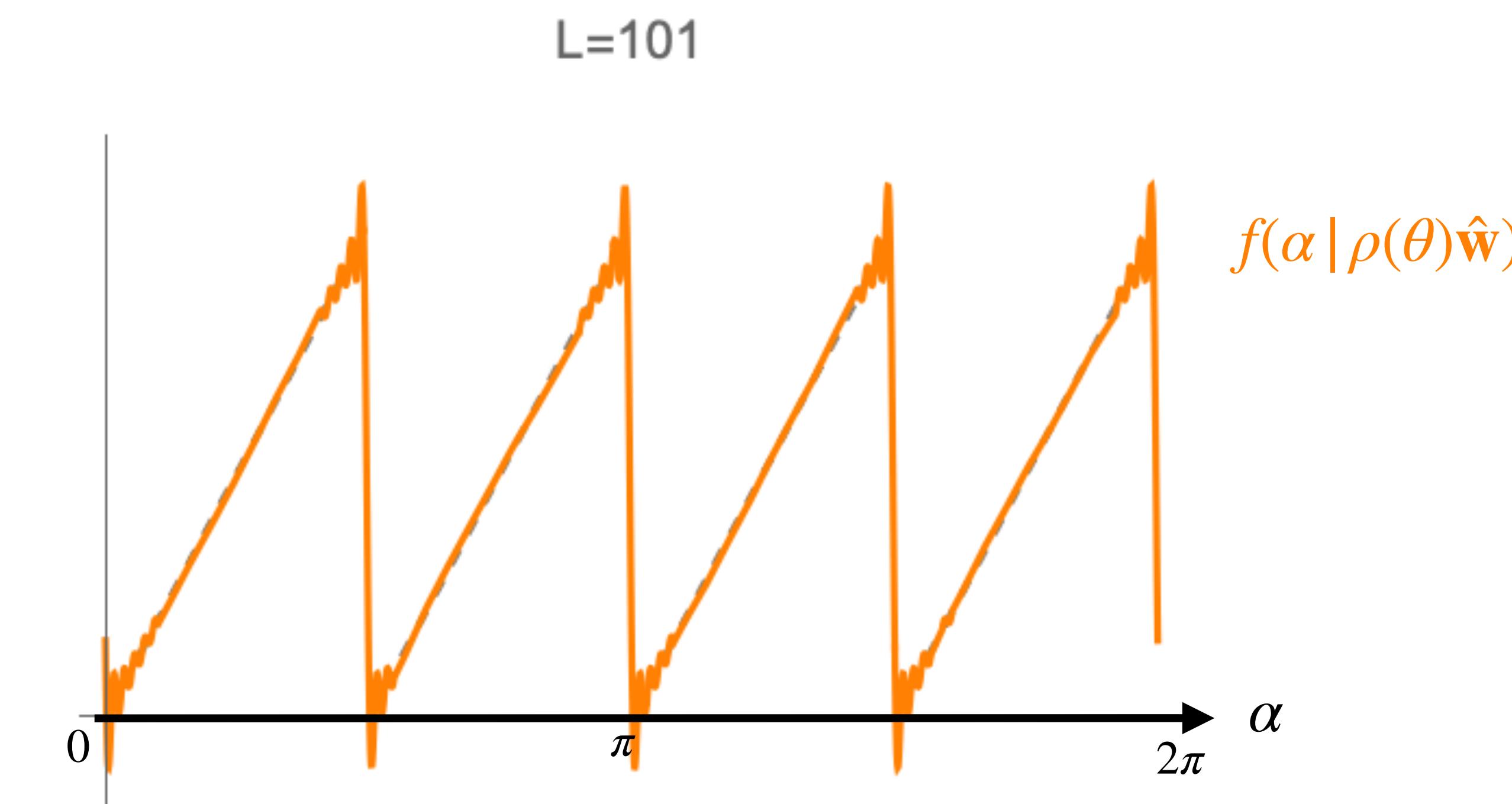
$$f(\alpha | \hat{\mathbf{w}}) = \hat{\mathbf{w}}^\dagger Y(\alpha)$$

Then we can **steer**/shift this function by transforming the weights $\hat{\mathbf{w}}$

$$f(\alpha - \theta | \hat{\mathbf{w}}) = f(\alpha | \rho(\theta)\hat{\mathbf{w}})$$

Proof:

$$\begin{aligned} f(\alpha - \theta | \hat{\mathbf{w}}) &= \hat{\mathbf{w}}^\dagger Y(\alpha - \theta) \\ &= \hat{\mathbf{w}}^\dagger \rho(-\theta) Y(\alpha) \\ &= \hat{\mathbf{w}}^\dagger \rho(\theta)^\dagger Y(\alpha) \\ &= (\rho(\theta)\hat{\mathbf{w}})^\dagger Y(\alpha) \\ &= f(\alpha | \rho(\theta)\hat{\mathbf{w}}) \end{aligned}$$



Two dimensional rotation-steerable functions

- The previous functions $\rho_l(\theta) = e^{il\theta}$ are (irreducible) representations of $SO(2)$

Recall lecture 1.6 (Group Theory | Homogeneous/quotient spaces)

Transitive action

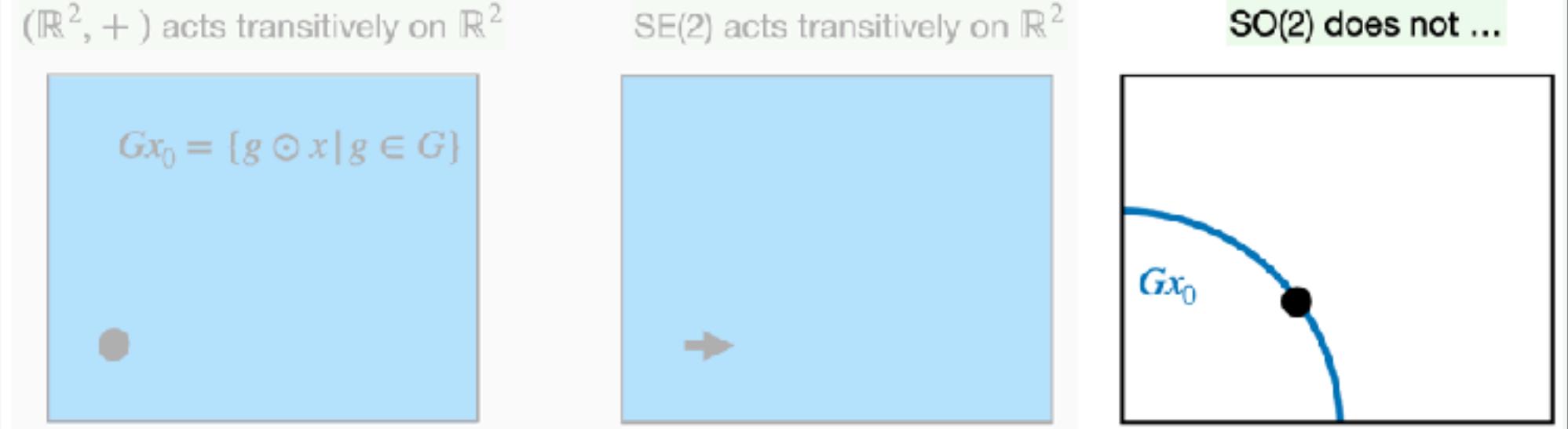
Transitive action: An action $\odot : G \times X \rightarrow X$ such that

$$\forall_{x_0, x \in X} \exists_{g \in G} : x = g \odot x_0$$

$(\mathbb{R}^2, +)$ acts transitively on \mathbb{R}^2

$SE(2)$ acts transitively on \mathbb{R}^2

$SO(2)$ does not ...



6

- Though not transitively...
- It does act transitively on S^1 though
- Use polar coordinates $\mathbb{R}^2 \ni \mathbf{x} \leftrightarrow (r, \alpha) \in \mathbb{R}^+ \times S^1$ to come up with a rotation-steerable basis for $\mathbb{L}_2(\mathbb{R}^2)$!

Two dimensional rotation-steerable functions

- Consider a function $f(\mathbf{x}) = \bar{f}(r, \alpha)$ in polar coordinates

$$\mathbf{x} = (r \cos \alpha, r \sin \alpha)$$

- The action of $SO(2)$ on \mathbb{R}^2 in polar coords translates to

$$\mathbf{x} \mapsto \mathbf{R}_\theta \mathbf{x} \quad \leftrightarrow \quad (r, \alpha) \mapsto (r, \alpha + \theta)$$

Proof: $\mathbf{R}_\theta \mathbf{x} = \mathbf{R}_\theta \begin{pmatrix} r \cos \alpha \\ r \sin \alpha \end{pmatrix}$

$$= \begin{pmatrix} r(\cos \theta \cos \alpha - \sin \alpha \sin \theta) \\ r(\cos \theta \sin \alpha + \cos \alpha \sin \theta) \end{pmatrix}$$
$$= \begin{pmatrix} r \cos(\theta + \alpha) \\ r \sin(\theta + \alpha) \end{pmatrix}$$

Two dimensional rotation-steerable functions

- Consider a function $f(\mathbf{x}) = \bar{f}(r, \alpha)$ in polar coordinates

$$\mathbf{x} = (r \cos \alpha, r \sin \alpha)$$

- The action of $SO(2)$ on \mathbb{R}^2 in polar coords translates to

$$\mathbf{x} \mapsto \mathbf{R}_\theta \mathbf{x} \quad \leftrightarrow \quad (r, \alpha) \mapsto (r, \alpha + \theta)$$

- Then, functions are rotated simply by a shift in the angular axis

$$\mathcal{L}_\theta^{SO(2)} f(\mathbf{x}) = f(\mathbf{R}_\theta^{-1} \mathbf{x}) \quad \leftrightarrow \quad \mathcal{L}_\theta^{SO(2)} \bar{f}(r, \alpha) = \bar{f}(r, \alpha - \theta)$$

Proof: $\mathbf{R}_\theta \mathbf{x} = \mathbf{R}_\theta \begin{pmatrix} r \cos \alpha \\ r \sin \alpha \end{pmatrix}$

$$\begin{aligned} &= \begin{pmatrix} r(\cos \theta \cos \alpha - \sin \alpha \sin \theta) \\ r(\cos \theta \sin \alpha + \cos \alpha \sin \theta) \end{pmatrix} \\ &= \begin{pmatrix} r \cos(\theta + \alpha) \\ r \sin(\theta + \alpha) \end{pmatrix} \end{aligned}$$

Two dimensional rotation-steerable functions

- Consider a function $f(\mathbf{x}) = \bar{f}(r, \alpha)$ in polar coordinates

$$\mathbf{x} = (r \cos \alpha, r \sin \alpha)$$

Proof: $\mathbf{R}_\theta \mathbf{x} = \mathbf{R}_\theta \begin{pmatrix} r \cos \alpha \\ r \sin \alpha \end{pmatrix}$

$$= \begin{pmatrix} r(\cos \theta \cos \alpha - \sin \alpha \sin \theta) \\ r(\cos \theta \sin \alpha + \cos \alpha \sin \theta) \end{pmatrix}$$

$$= \begin{pmatrix} r \cos(\theta + \alpha) \\ r \sin(\theta + \alpha) \end{pmatrix}$$

- The action of $SO(2)$ on \mathbb{R}^2 in polar coords translates to

$$\mathbf{x} \mapsto \mathbf{R}_\theta \mathbf{x} \leftrightarrow (r, \alpha) \mapsto (r, \alpha + \theta)$$

- Then, functions are rotated simply by a shift in the angular axis

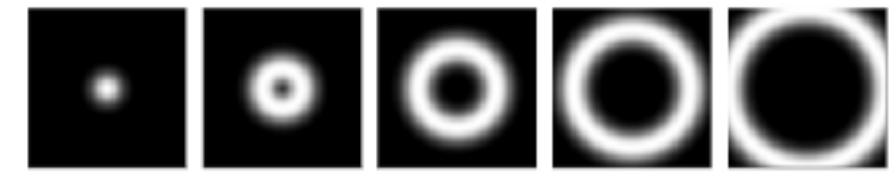
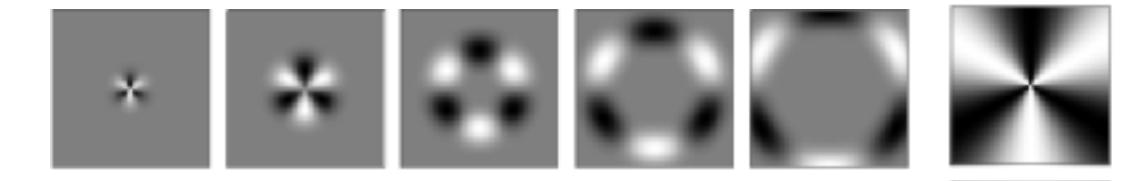
$$\mathcal{L}_\theta^{SO(2)} f(\mathbf{x}) = f(\mathbf{R}_\theta^{-1} \mathbf{x}) \leftrightarrow \mathcal{L}_\theta^{SO(2)} \bar{f}(r, \alpha) = \bar{f}(r, \alpha - \theta)$$

- Now, let's use this to parametrize polar-separable conv kernels and focus on the angular part

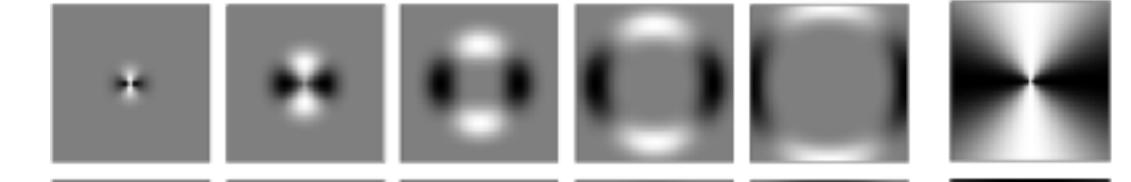
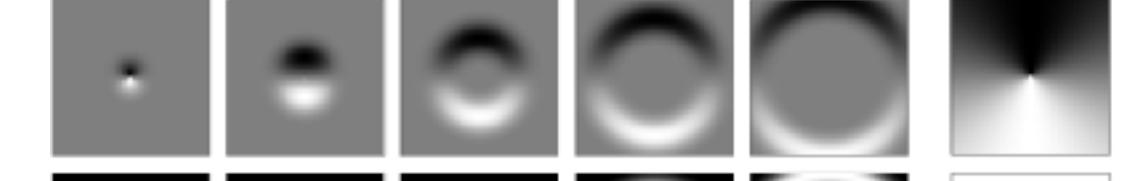
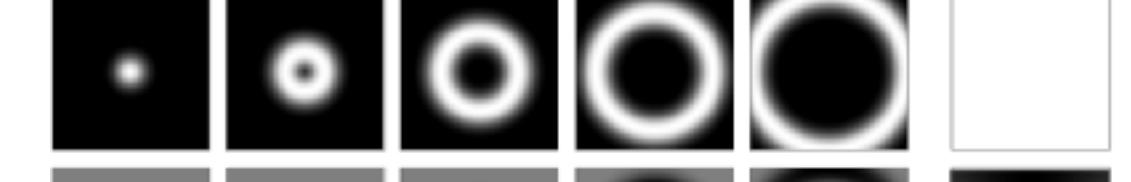
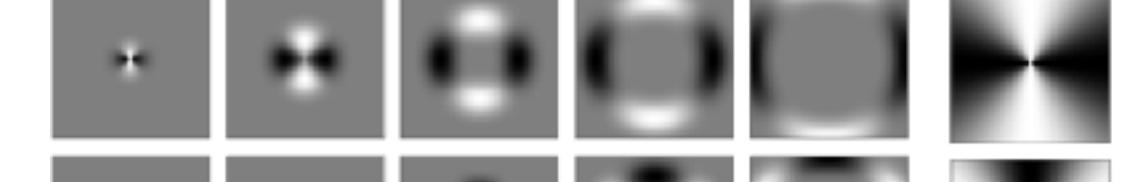
$$k(\mathbf{x} \mid \mathbf{w}) = k^\rightarrow(r \mid \mathbf{w}) k^\circlearrowleft(\alpha \mid \mathbf{w})$$

A function on S^1 !!!

$$k_m^\rightarrow(r)$$



$$k_l^\circlearrowleft(\alpha)$$



Two dimensional rotation-steerable functions

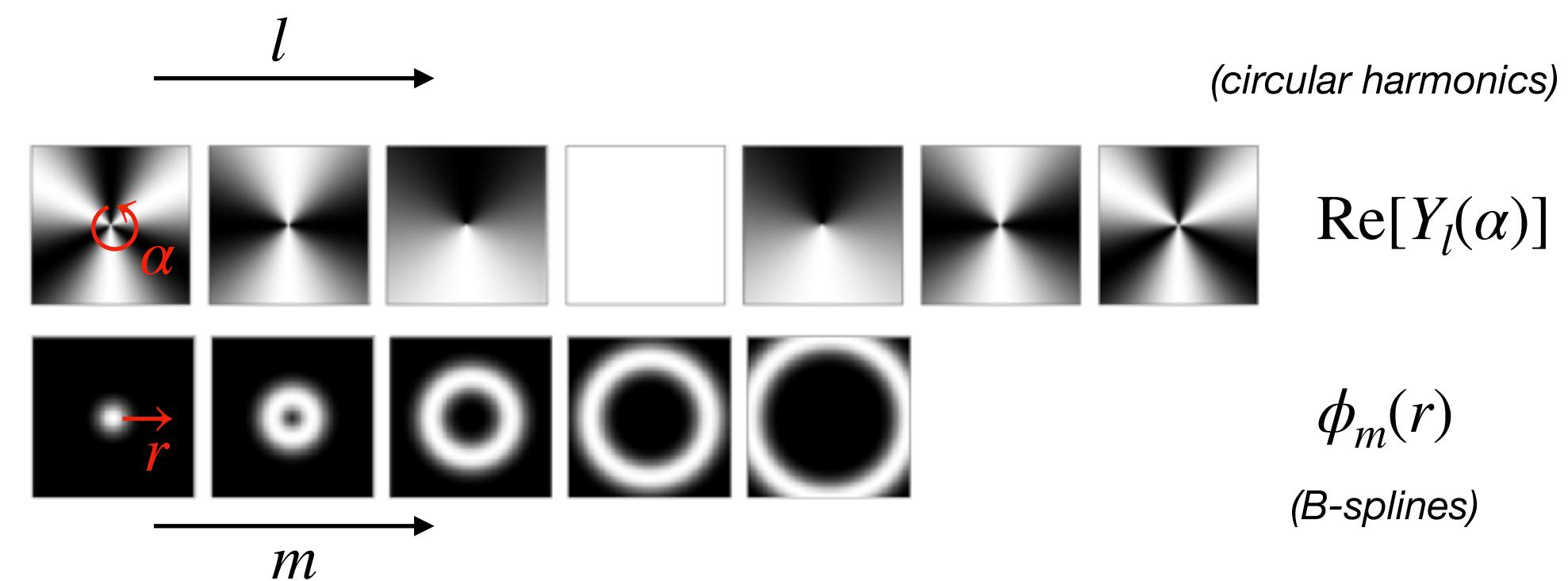
- Consider polar-separable convolution kernel:

$$k(\mathbf{x} \mid \mathbf{w}) = k^\rightarrow(r \mid \mathbf{w}) k^\circlearrowleft(\alpha \mid \mathbf{w}),$$

- with k^\circlearrowleft in an $SO(2)$ steerable basis, and k^\rightarrow in some radial basis:

$$k^\circlearrowleft(\alpha \mid \mathbf{w}) = \sum_l \bar{w}_l Y_l(\alpha), \quad \text{e.g., with} \quad Y_l(\alpha) = e^{i l \alpha},$$

$$k^\rightarrow(r \mid \mathbf{w}) = \sum_m w_m \phi_m(r)$$



Two dimensional rotation-steerable functions

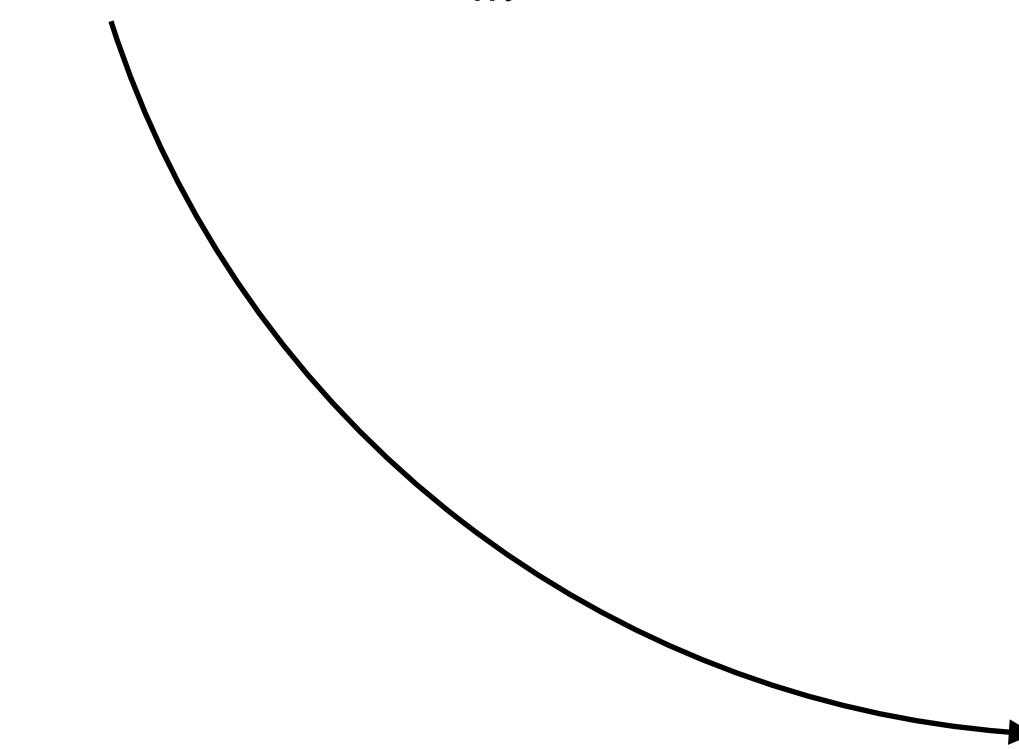
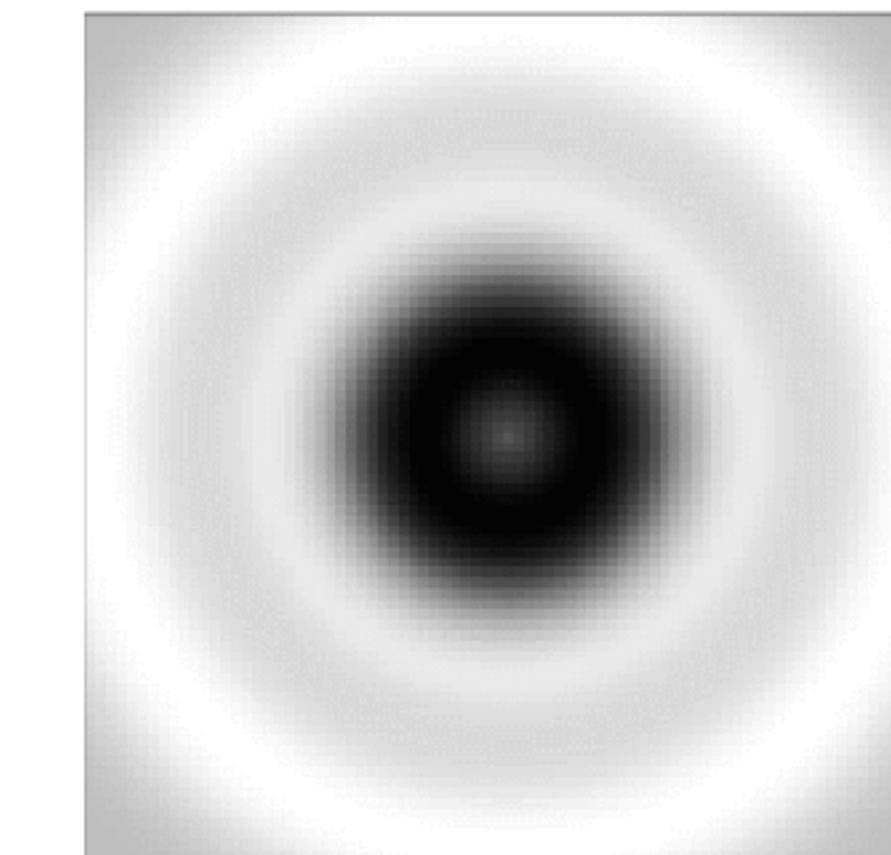
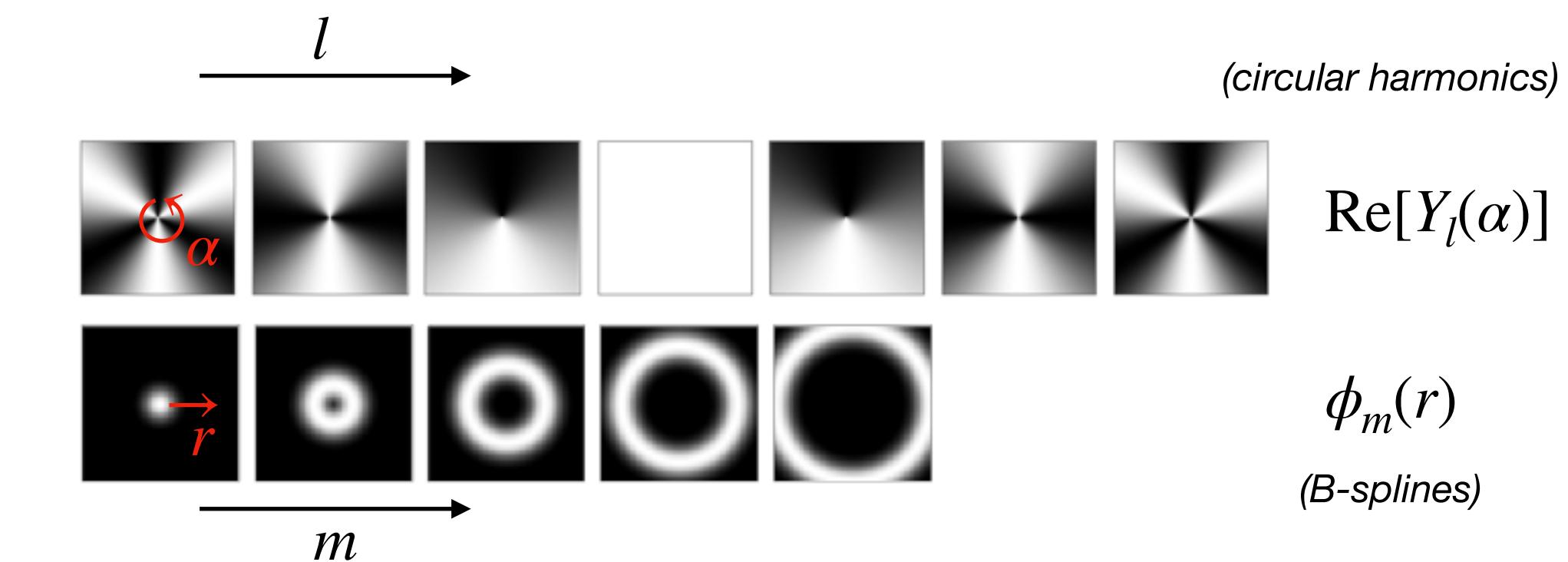
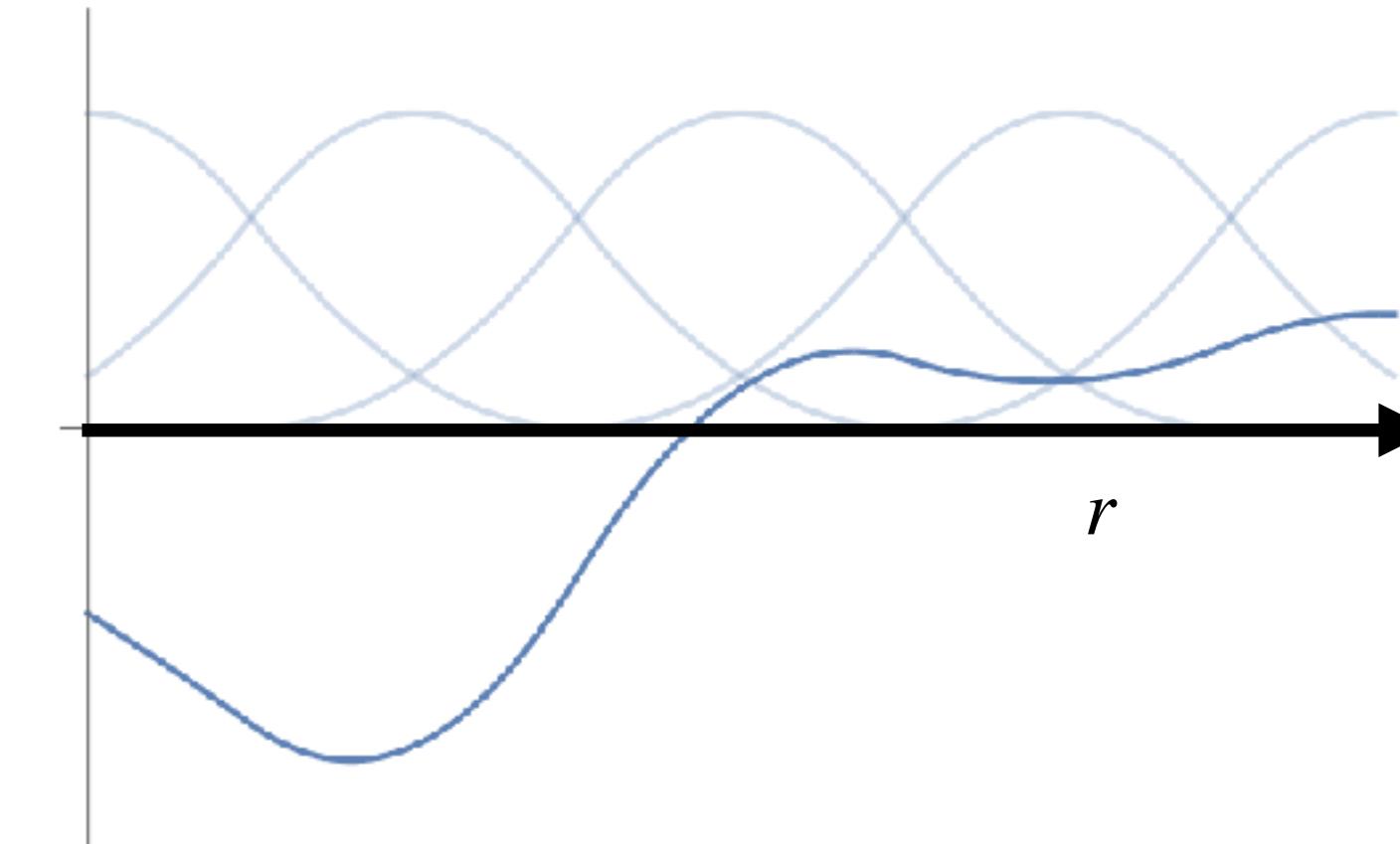
- Consider polar-separable convolution kernel:

$$k(\mathbf{x} | \mathbf{w}) = k^\rightarrow(r | \mathbf{w}) k^\circlearrowleft(\alpha | \mathbf{w}),$$

- with k^\circlearrowleft in an $SO(2)$ steerable basis, and k^\rightarrow in some radial basis:

$$k^\circlearrowleft(\alpha | \mathbf{w}) = \sum_l \bar{w}_l Y_l(\alpha), \quad \text{e.g., with} \quad Y_l(\alpha) = e^{i l \alpha},$$

$$k^\rightarrow(r | \mathbf{w}) = \sum_m w_m \phi_m(r)$$



Two dimensional rotation-steerable functions

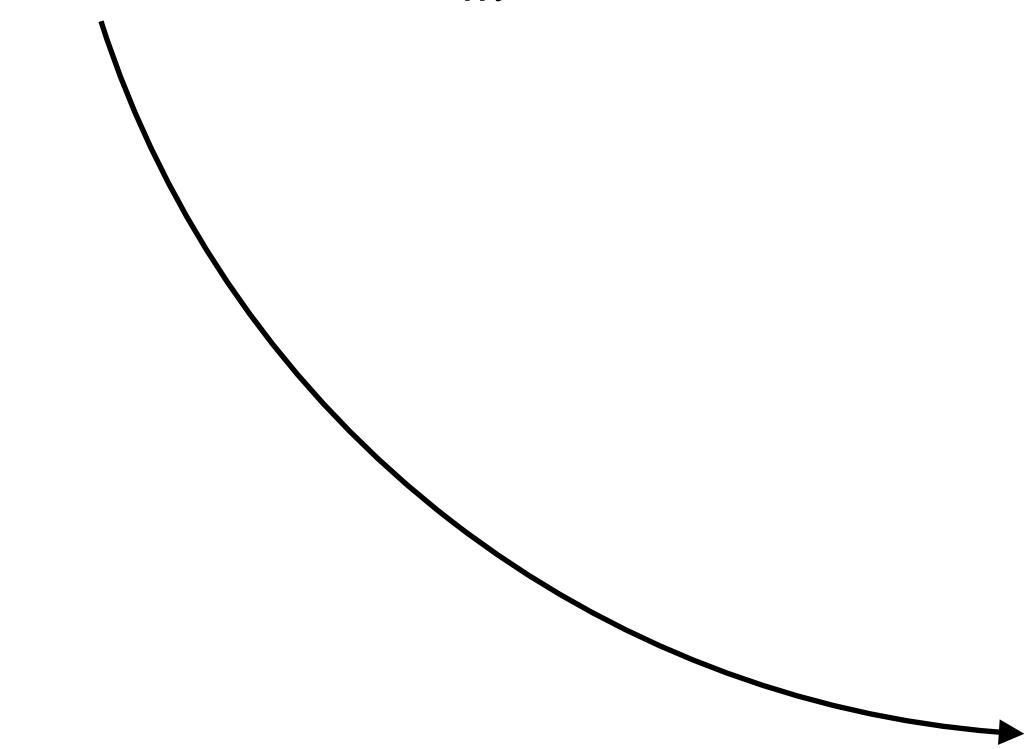
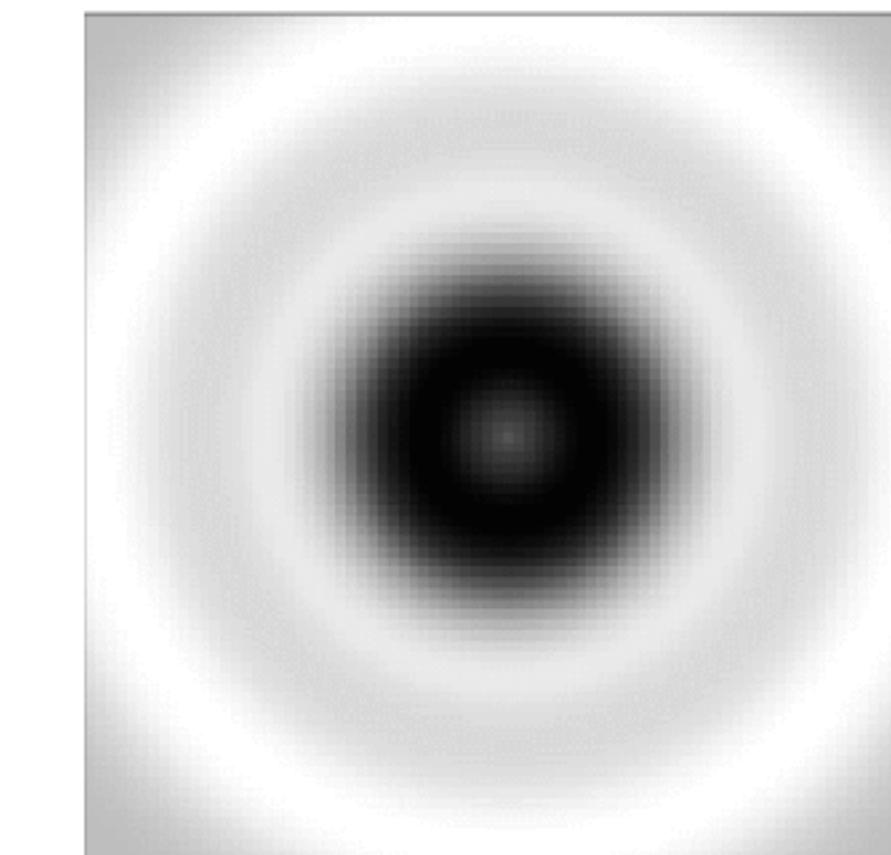
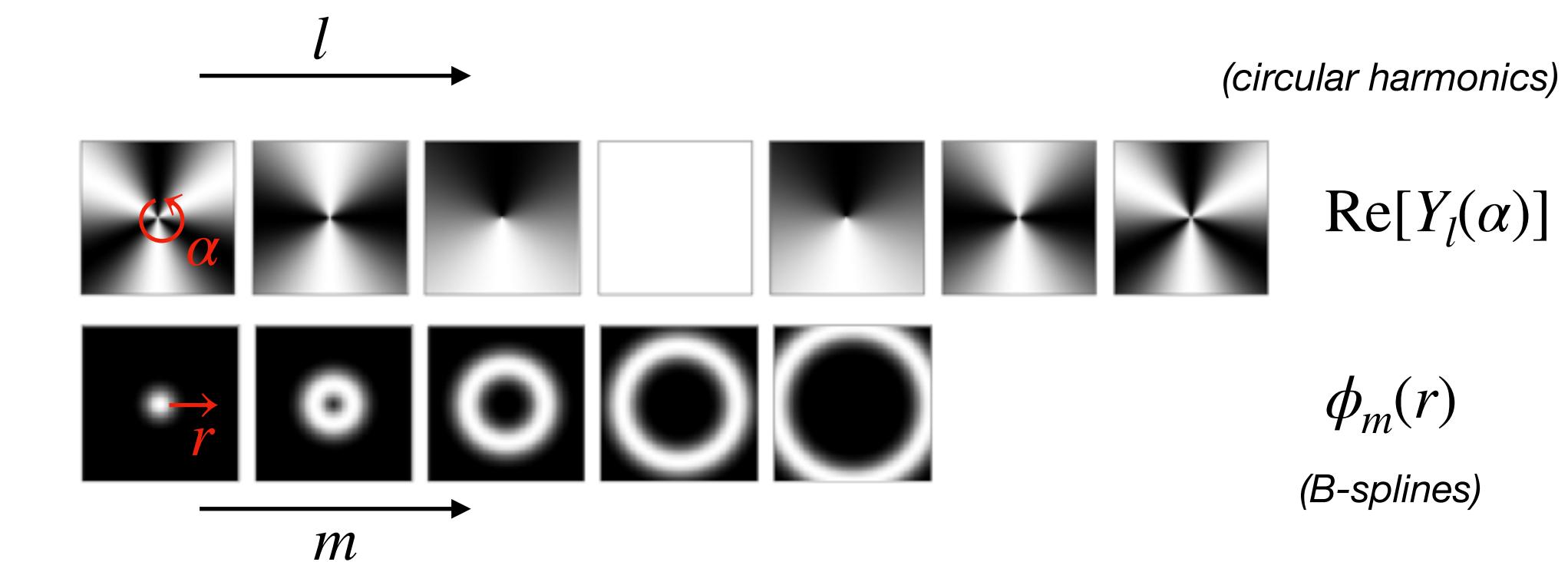
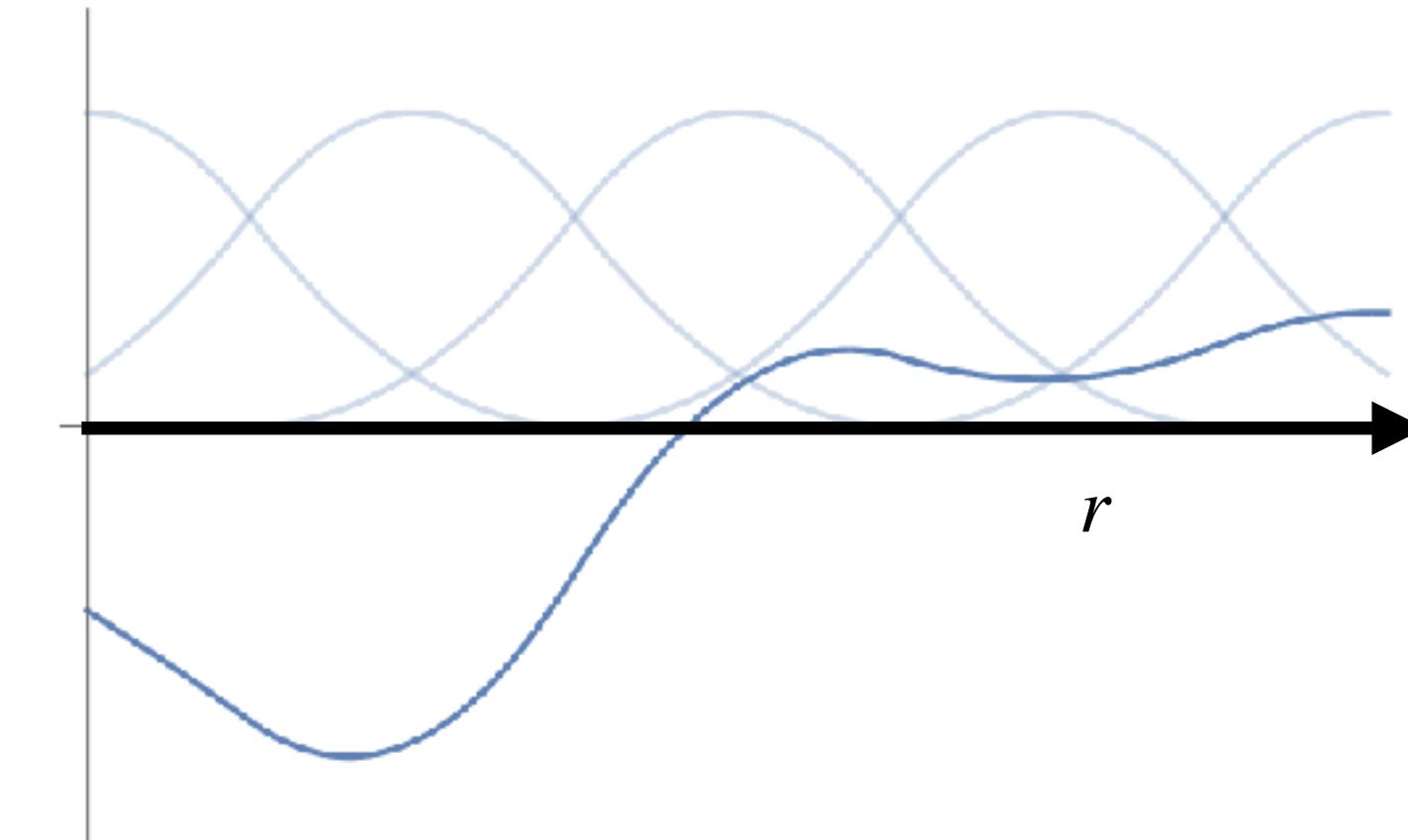
- Consider polar-separable convolution kernel:

$$k(\mathbf{x} | \mathbf{w}) = k^\rightarrow(r | \mathbf{w}) k^\circlearrowleft(\alpha | \mathbf{w}),$$

- with k^\circlearrowleft in an $SO(2)$ steerable basis, and k^\rightarrow in some radial basis:

$$k^\circlearrowleft(\alpha | \mathbf{w}) = \sum_l \bar{w}_l Y_l(\alpha), \quad \text{e.g., with} \quad Y_l(\alpha) = e^{i l \alpha},$$

$$k^\rightarrow(r | \mathbf{w}) = \sum_m w_m \phi_m(r)$$



Two dimensional rotation-steerable functions

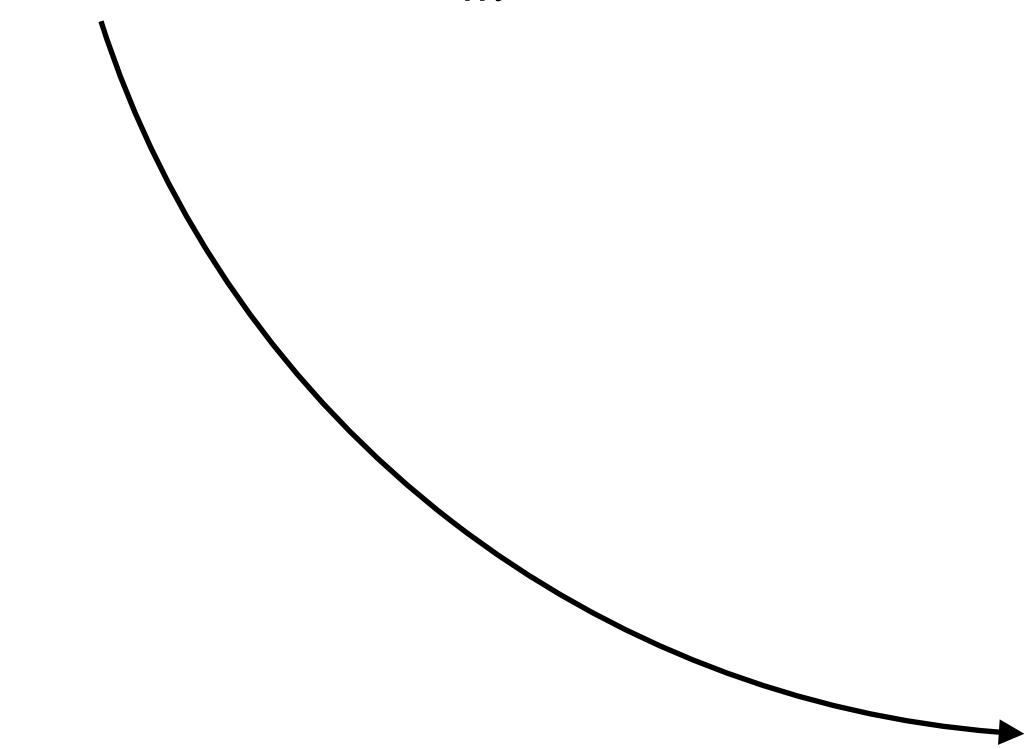
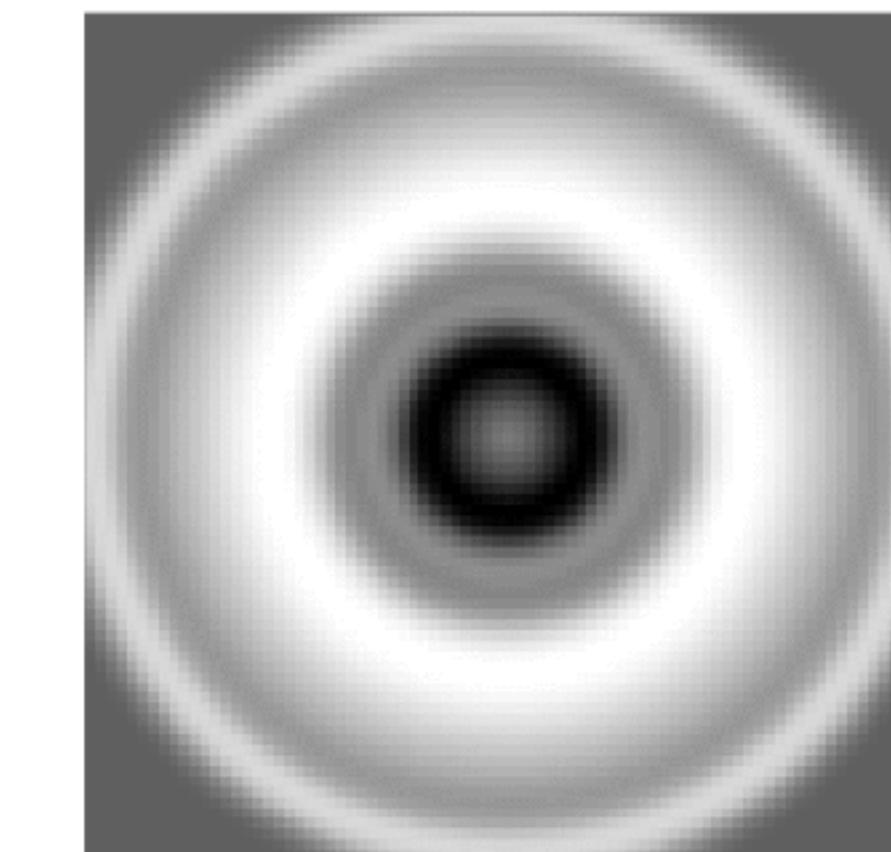
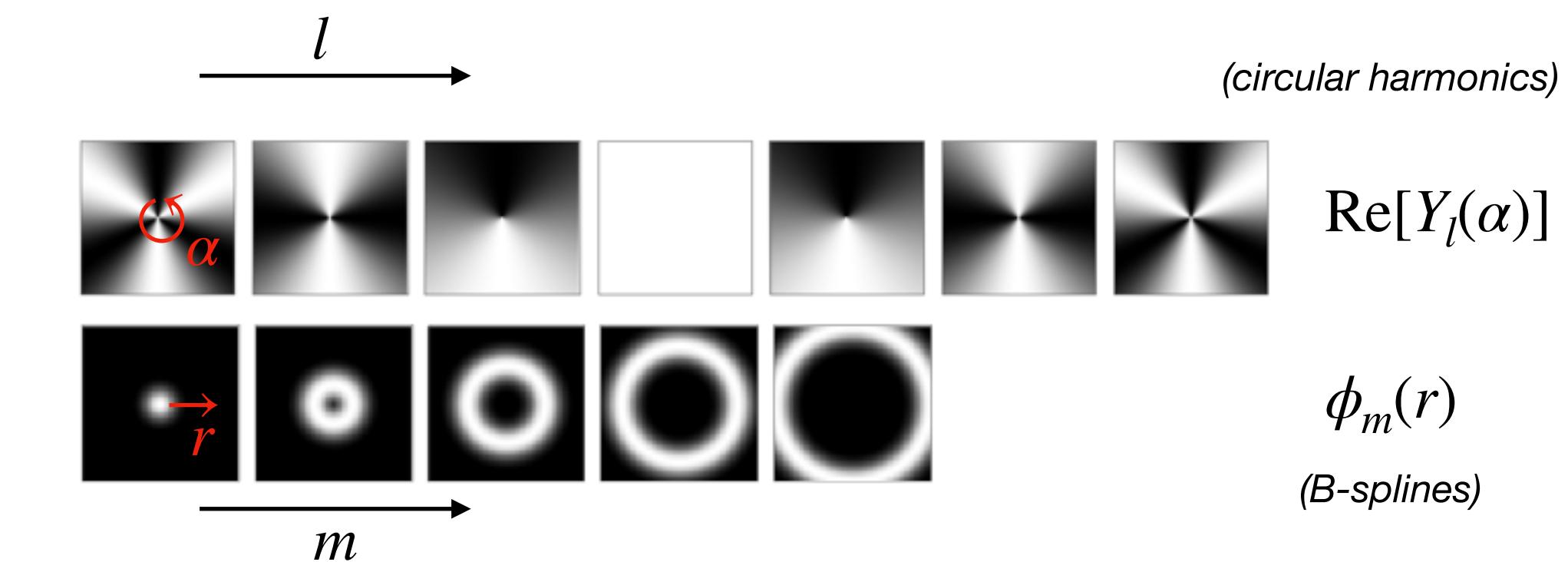
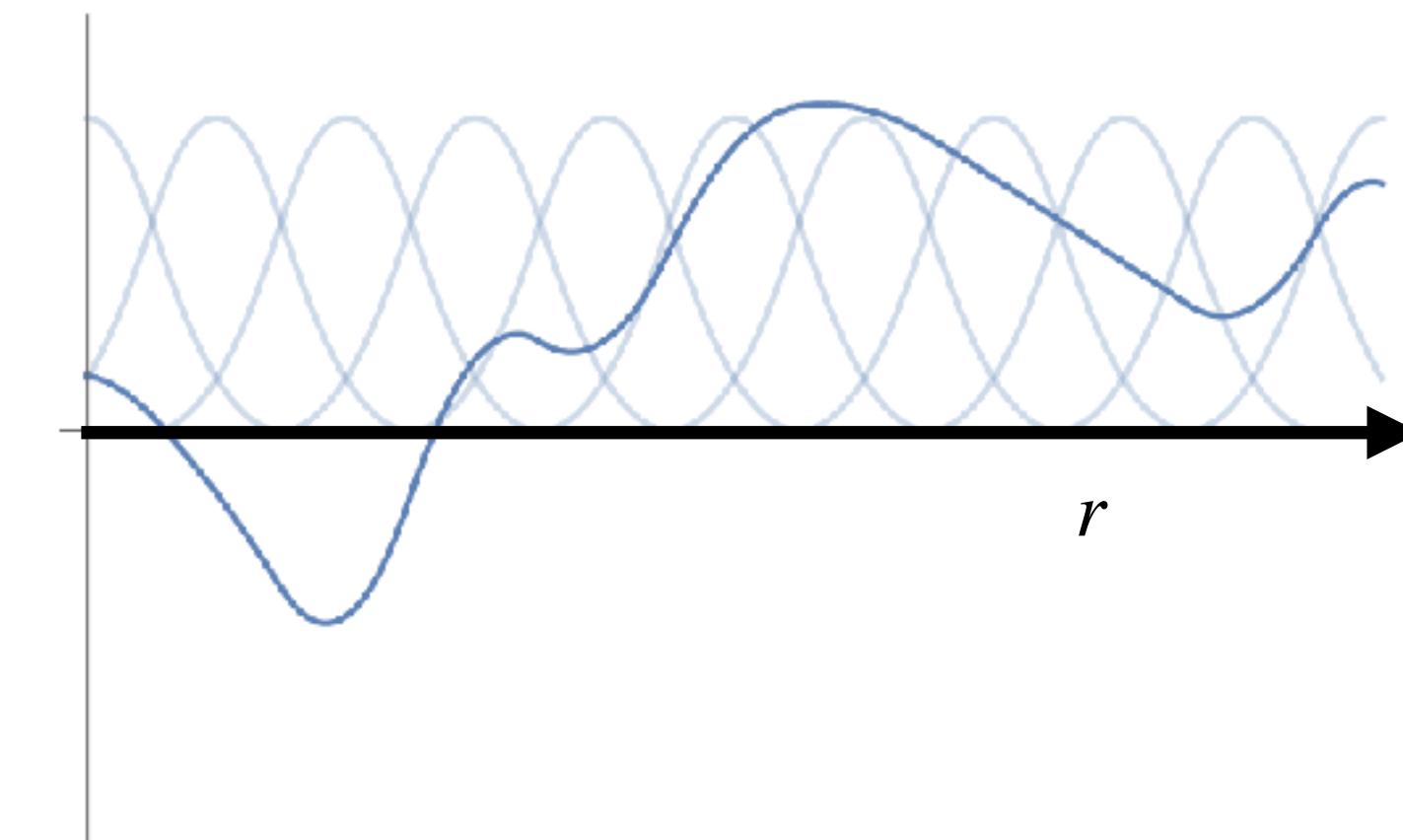
- Consider polar-separable convolution kernel:

$$k(\mathbf{x} | \mathbf{w}) = k^\rightarrow(r | \mathbf{w}) k^\circlearrowleft(\alpha | \mathbf{w}),$$

- with k^\circlearrowleft in an $SO(2)$ steerable basis, and k^\rightarrow in some radial basis:

$$k^\circlearrowleft(\alpha | \mathbf{w}) = \sum_l \bar{w}_l Y_l(\alpha), \quad \text{e.g., with} \quad Y_l(\alpha) = e^{i l \alpha},$$

$$k^\rightarrow(r | \mathbf{w}) = \sum_m w_m \phi_m(r)$$



Two dimensional rotation-steerable functions

- Consider polar-separable convolution kernel:

$$k(\mathbf{x} | \mathbf{w}) = k^\rightarrow(r | \mathbf{w}) k^\circlearrowleft(\alpha | \mathbf{w}),$$

- with k^\circlearrowleft in an $SO(2)$ steerable basis, and k^\rightarrow in some radial basis:

$$k^\circlearrowleft(\alpha | \mathbf{w}) = \sum_l \bar{w}_l Y_l(\alpha), \quad \text{e.g., with} \quad Y_l(\alpha) = e^{i l \alpha},$$

$$k^\rightarrow(r | \mathbf{w}) = \sum_m w_m \phi_m(r)$$

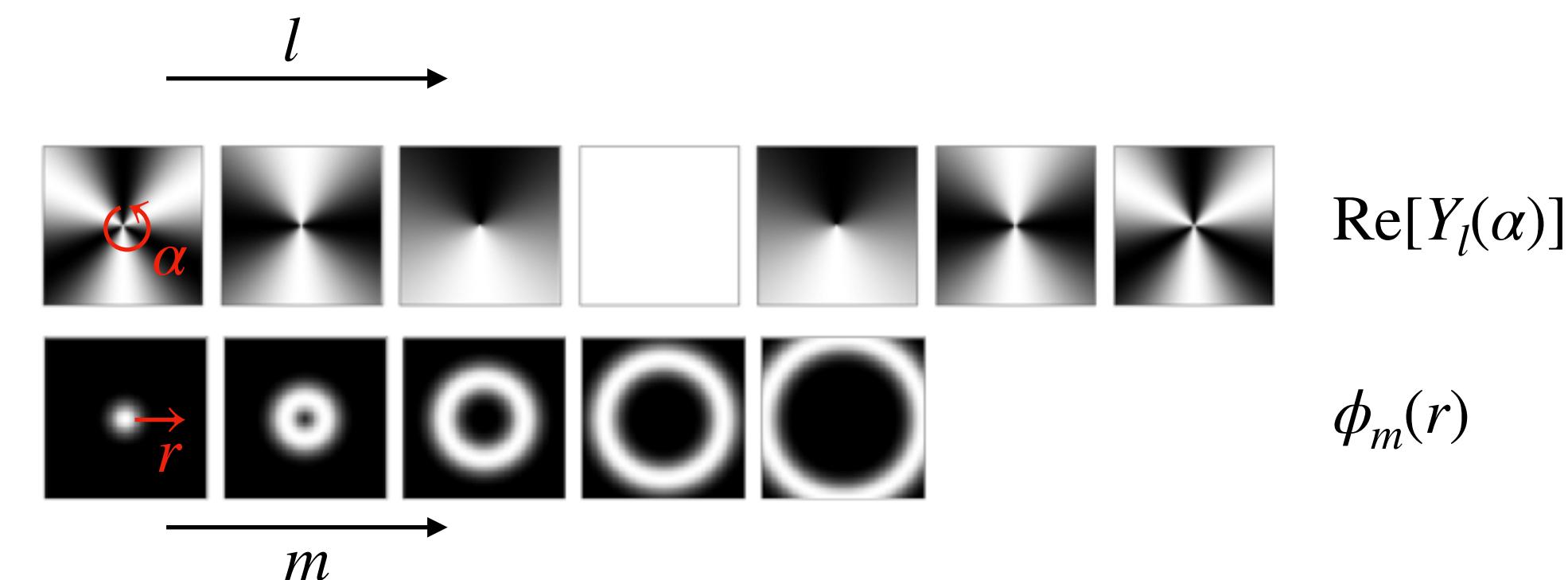
- Then we may as well write it as

$$\begin{aligned} k(\mathbf{x} | \mathbf{w}) &= \sum_l \sum_m w_m \bar{w}_l \phi_m(r) Y_l(\alpha) \\ &= \sum_l \sum_m \bar{w}_{ml} \phi_m(r) Y_l(\alpha) \quad (\text{"absorb" weights}) \\ &= \sum_l \hat{w}_l(r) Y_l(\alpha) \end{aligned}$$

with radius dependent weights $\hat{w}_l(r) = \sum_m w_{ml} \phi_m(r)$

- Then such kernel is clearly rotation steerable!

$$k(\mathbf{R}_\theta^{-1} \mathbf{x} | \hat{\mathbf{w}}(r)) = k(\mathbf{x} | \rho(\theta) \hat{\mathbf{w}}(r))$$



Two dimensional rotation-steerable functions

- Consider polar-separable convolution kernel:

$$k(\mathbf{x} \mid \mathbf{w}) = k^\rightarrow(r \mid \mathbf{w}) k^\circlearrowleft(\alpha \mid \mathbf{w}),$$

- with k^\circlearrowleft in an $SO(2)$ steerable basis, and k^\rightarrow in some radial basis:

$$k^\circlearrowleft(\alpha \mid \mathbf{w}) = \sum_l \bar{w}_l Y_l(\alpha), \quad \text{e.g., with} \quad Y_l(\alpha) = e^{i l \alpha},$$

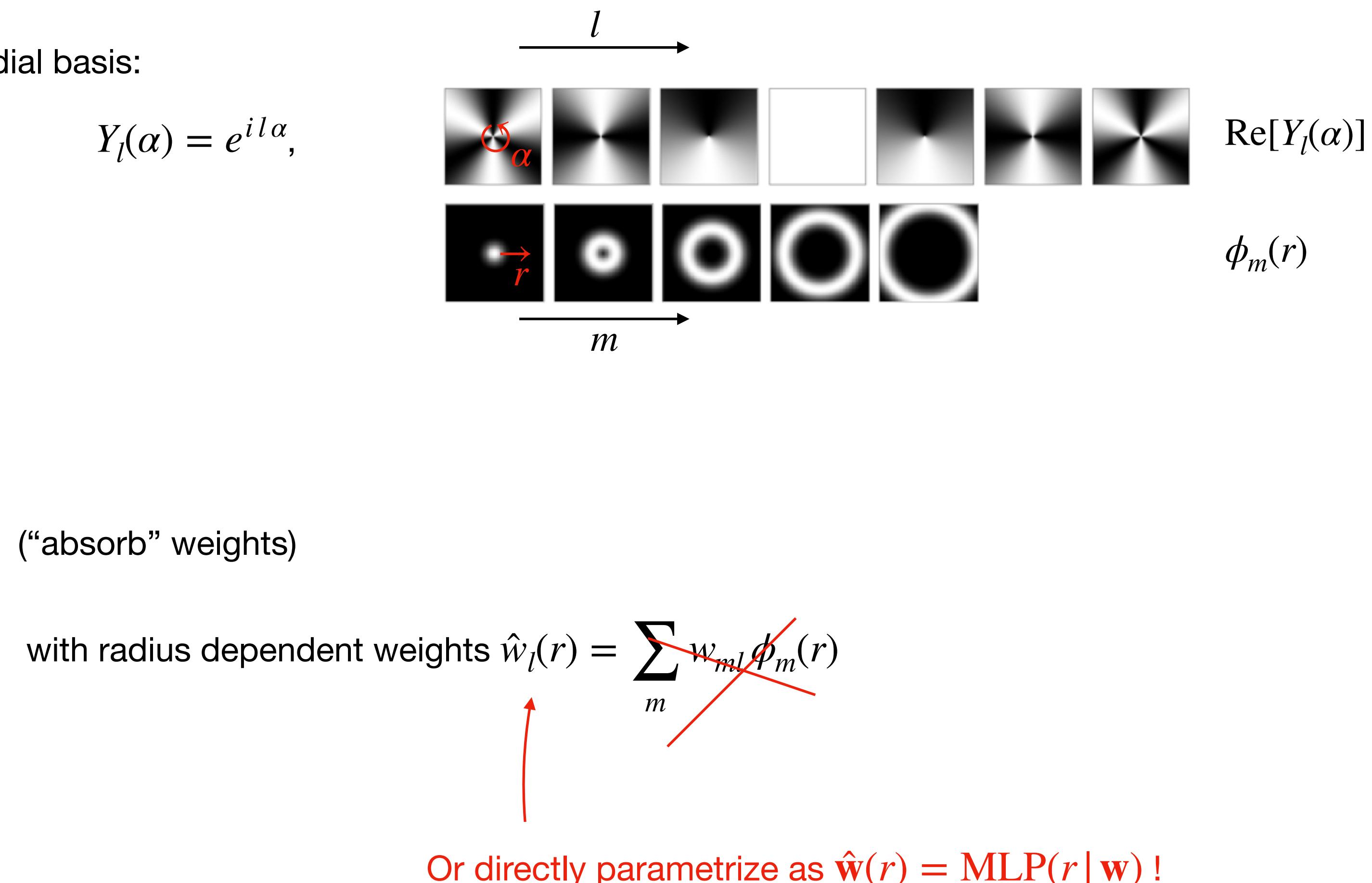
$$k^\rightarrow(r \mid \mathbf{w}) = \sum_m w_m \phi_m(r)$$

- Then we may as well write it as

$$\begin{aligned} k(\mathbf{x} \mid \mathbf{w}) &= \sum_l \sum_m w_m \bar{w}_l \phi_m(r) Y_l(\alpha) \\ &= \sum_l \sum_m \bar{w}_{ml} \phi_m(r) Y_l(\alpha) \quad (\text{"absorb" weights}) \\ &= \sum_l \bar{w}_l(r) Y_l(\alpha) \end{aligned}$$

- Then such kernel is clearly rotation steerable!

$$k(\mathbf{R}_\theta^{-1} \mathbf{x} \mid \hat{\mathbf{w}}(r)) = k(\mathbf{x} \mid \rho(\theta) \hat{\mathbf{w}}(r))$$



Complex (irreducible) representations

$$\begin{array}{ccc}
 Y(\mathbf{R}_\theta^{-1} \mathbf{x}) & = & \rho(\mathbf{R}_\theta^{-1}) \\
 \begin{array}{cc}
 \text{Re} & \text{Im} \\
 \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \end{array} \right) & \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \end{array} \right) \\
 \xrightarrow{\quad} & \xrightarrow{\quad} & \xrightarrow{\quad} \\
 \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \end{array} \right) & = & \left(\begin{array}{cccccc} e^{3i\theta} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & e^{2i\theta} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & e^{1i\theta} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & e^{-1i\theta} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & e^{-2i\theta} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & e^{-3i\theta} \end{array} \right) \\
 \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \end{array} \right) & & \left(\begin{array}{cc}
 \text{Re} & \text{Im} \\
 \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \end{array} \right) & \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \end{array} \right) \\
 \xrightarrow{\quad} & \xrightarrow{\quad} & \xrightarrow{\quad} \\
 \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \end{array} \right) & & \left(\begin{array}{cc} \text{Re} & \text{Im} \\ \text{Im} & \text{Re} \end{array} \right)
 \end{array} \right)
 \end{array}$$

Complex (irreducible) representations

$$\begin{array}{ccc}
 Y(\mathbf{R}_\theta^{-1} \mathbf{x}) & = & \rho(\mathbf{R}_\theta^{-1}) \\
 \begin{array}{cc}
 \text{Re} & \text{Im} \\
 \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \end{array} \right) & \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \end{array} \right) \\
 \xrightarrow{\quad} & \xrightarrow{\quad} & \xrightarrow{\quad} \\
 \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \end{array} \right) & = & \left(\begin{array}{cccccc} e^{3i\theta} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & e^{2i\theta} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & e^{1i\theta} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & e^{-1i\theta} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & e^{-2i\theta} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & e^{-3i\theta} \end{array} \right) \\
 \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \end{array} \right) & & \left(\begin{array}{cc}
 \text{Re} & \text{Im} \\
 \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \end{array} \right) & \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \end{array} \right) \\
 \xrightarrow{\quad} & \xrightarrow{\quad} & \xrightarrow{\quad} \\
 \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \\ \text{Re} \\ \text{Im} \end{array} \right) & & \left(\begin{array}{cc} \text{Re} & \text{Im} \\ \text{Im} & \text{Re} \end{array} \right)
 \end{array} \right)
 \end{array}$$

Complex (irreducible) representations

$$\begin{array}{ccc}
 Y(\mathbf{R}_\theta^{-1} \mathbf{x}) & = & \rho(\mathbf{R}_\theta^{-1}) \\
 \begin{array}{cc}
 \text{Re} & \text{Im} \\
 \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \vdots \\ \text{Re} \\ \text{Im} \end{array} \right) & \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \vdots \\ \text{Re} \\ \text{Im} \end{array} \right) \\
 \longrightarrow & \longrightarrow
 \end{array} & = & \begin{pmatrix} e^{3i\theta} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & e^{2i\theta} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & e^{1i\theta} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & e^{-1i\theta} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & e^{-2i\theta} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & e^{-3i\theta} \end{pmatrix} \\
 \begin{array}{cc}
 \text{Re} & \text{Im} \\
 \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \vdots \\ \text{Re} \\ \text{Im} \end{array} \right) & \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \vdots \\ \text{Re} \\ \text{Im} \end{array} \right) \\
 \longrightarrow & \longrightarrow
 \end{array} & = & \begin{array}{cc}
 Y(\mathbf{x}) \\
 \left(\begin{array}{c} \text{Re} \\ \text{Im} \\ \vdots \\ \text{Re} \\ \text{Im} \end{array} \right) \\
 \longrightarrow
 \end{array}
 \end{array}$$

cos($l\alpha$)

sin($l\alpha$)

Real (irreducible) representations

$$\begin{aligned}
 Y(\mathbf{R}_\theta^{-1} \mathbf{x}) &= \rho(\mathbf{R}_\theta^{-1}) Y(\mathbf{x}) \\
 \left(\begin{array}{c} \text{Image 1} \\ \text{Image 2} \\ \text{Image 3} \\ \text{Image 4} \\ \text{Image 5} \\ \text{Image 6} \\ \text{Image 7} \\ \text{Image 8} \end{array} \right) &= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \cos \theta & \sin \theta & 0 & 0 & 0 & 0 & 0 \\ 0 & -\sin \theta & \cos \theta & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos 2\theta & \sin 2\theta & 0 & 0 & 0 \\ 0 & 0 & 0 & -\sin 2\theta & \cos 2\theta & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cos 3\theta & \sin 3\theta & 0 \\ 0 & 0 & 0 & 0 & -\sin 3\theta & 0 & \cos 3\theta & 0 \end{pmatrix} \left(\begin{array}{c} \text{Image 1} \\ \text{Image 2} \\ \text{Image 3} \\ \text{Image 4} \\ \text{Image 5} \\ \text{Image 6} \\ \text{Image 7} \\ \text{Image 8} \end{array} \right)
 \end{aligned}$$

Real (irreducible) representations

$$\begin{aligned}
 Y(\mathbf{R}_\theta^{-1} \mathbf{x}) &= \rho(\mathbf{R}_\theta^{-1}) Y(\mathbf{x}) \\
 \left(\begin{array}{c} \text{Image 1} \\ \text{Image 2} \\ \text{Image 3} \\ \text{Image 4} \\ \text{Image 5} \\ \text{Image 6} \\ \text{Image 7} \\ \text{Image 8} \end{array} \right) &= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \cos \theta & \sin \theta & 0 & 0 & 0 & 0 & 0 \\ 0 & -\sin \theta & \cos \theta & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos 2\theta & \sin 2\theta & 0 & 0 & 0 \\ 0 & 0 & 0 & -\sin 2\theta & \cos 2\theta & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \cos 3\theta & \sin 3\theta & 0 \\ 0 & 0 & 0 & 0 & -\sin 3\theta & 0 & \cos 3\theta & 0 \end{pmatrix} \left(\begin{array}{c} \text{Image 1} \\ \text{Image 2} \\ \text{Image 3} \\ \text{Image 4} \\ \text{Image 5} \\ \text{Image 6} \\ \text{Image 7} \\ \text{Image 8} \end{array} \right)
 \end{aligned}$$

Real (irreducible) representations

The real basis functions $Y_l(\mathbf{x}) = \begin{pmatrix} \cos(l\alpha) \\ \sin(l\alpha) \end{pmatrix}$ are steerable using $\rho_l(\mathbf{R}_\theta) = \begin{pmatrix} \cos l\theta & -\sin l\theta \\ \sin l\theta & \cos l\theta \end{pmatrix}$

Proof:

$$\begin{aligned}
Y_l(\mathbf{R}_\theta^{-1} \mathbf{x}) &= \begin{pmatrix} \cos(l(\alpha - \theta)) \\ \sin(l(\alpha - \theta)) \end{pmatrix} \\
&= \begin{pmatrix} \cos(l\alpha + -l\theta) \\ \sin(l\alpha + -l\theta) \end{pmatrix} = \begin{pmatrix} \cos(l\alpha)\cos(-l\theta) - \sin(l\alpha)\sin(-l\theta) \\ \sin(l\alpha)\cos(-l\theta) + \cos(l\alpha)\sin(-l\theta) \end{pmatrix} \\
&= \begin{pmatrix} \cos -l\theta & -\sin -l\theta \\ \sin -l\theta & \cos -l\theta \end{pmatrix} \begin{pmatrix} \cos(l\alpha) \\ \sin(l\alpha) \end{pmatrix} \\
&= \rho_l(\mathbf{R}_\theta^{-1}) Y_l(\mathbf{x})
\end{aligned}$$

$$\begin{pmatrix}
0 & 0 & 0 & 0 & \cos 3\theta & \sin 3\theta \\
0 & 0 & 0 & 0 & -\sin 3\theta & \cos 3\theta
\end{pmatrix}$$

Real (irreducible) representations

The real basis functions $Y_l(\mathbf{x}) = \begin{pmatrix} \cos(l\alpha) \\ \sin(l\alpha) \end{pmatrix}$ are steerable using $\rho_l(\mathbf{R}_\theta) = \begin{pmatrix} \cos l\theta & -\sin l\theta \\ \sin l\theta & \cos l\theta \end{pmatrix}$

Proof:

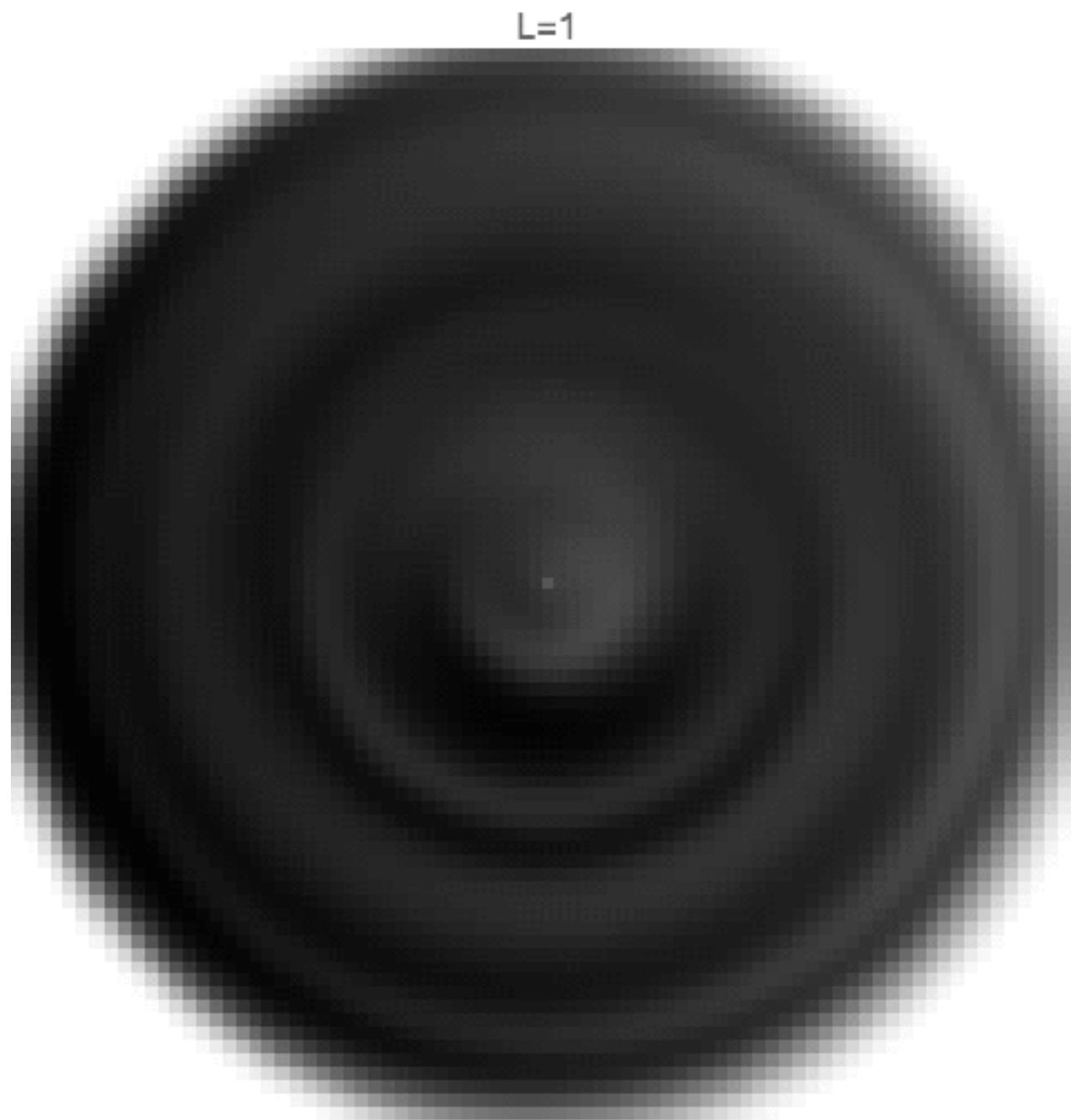
$$\begin{aligned} Y_l(\mathbf{R}_\theta^{-1}\mathbf{x}) &= \begin{pmatrix} \cos(l(\alpha - \theta)) \\ \sin(l(\alpha - \theta)) \end{pmatrix} \\ &= \begin{pmatrix} \cos(l\alpha + -l\theta) \\ \sin(l\alpha + -l\theta) \end{pmatrix} = \begin{pmatrix} \cos(l\alpha)\cos(-l\theta) - \sin(l\alpha)\sin(-l\theta) \\ \sin(l\alpha)\cos(-l\theta) + \cos(l\alpha)\sin(-l\theta) \end{pmatrix} \\ &= \begin{pmatrix} \cos -l\theta & -\sin -l\theta \\ \sin -l\theta & \cos -l\theta \end{pmatrix} \begin{pmatrix} \cos(l\alpha) \\ \sin(l\alpha) \end{pmatrix} \\ &= \rho_l(\mathbf{R}_\theta^{-1}) Y_l(\mathbf{x}) \end{aligned}$$

$$\begin{pmatrix} \cos 2\theta & -\sin 2\theta & \cos 3\theta & \sin 3\theta \\ \sin 2\theta & \cos 2\theta & -\sin 3\theta & \cos 3\theta \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

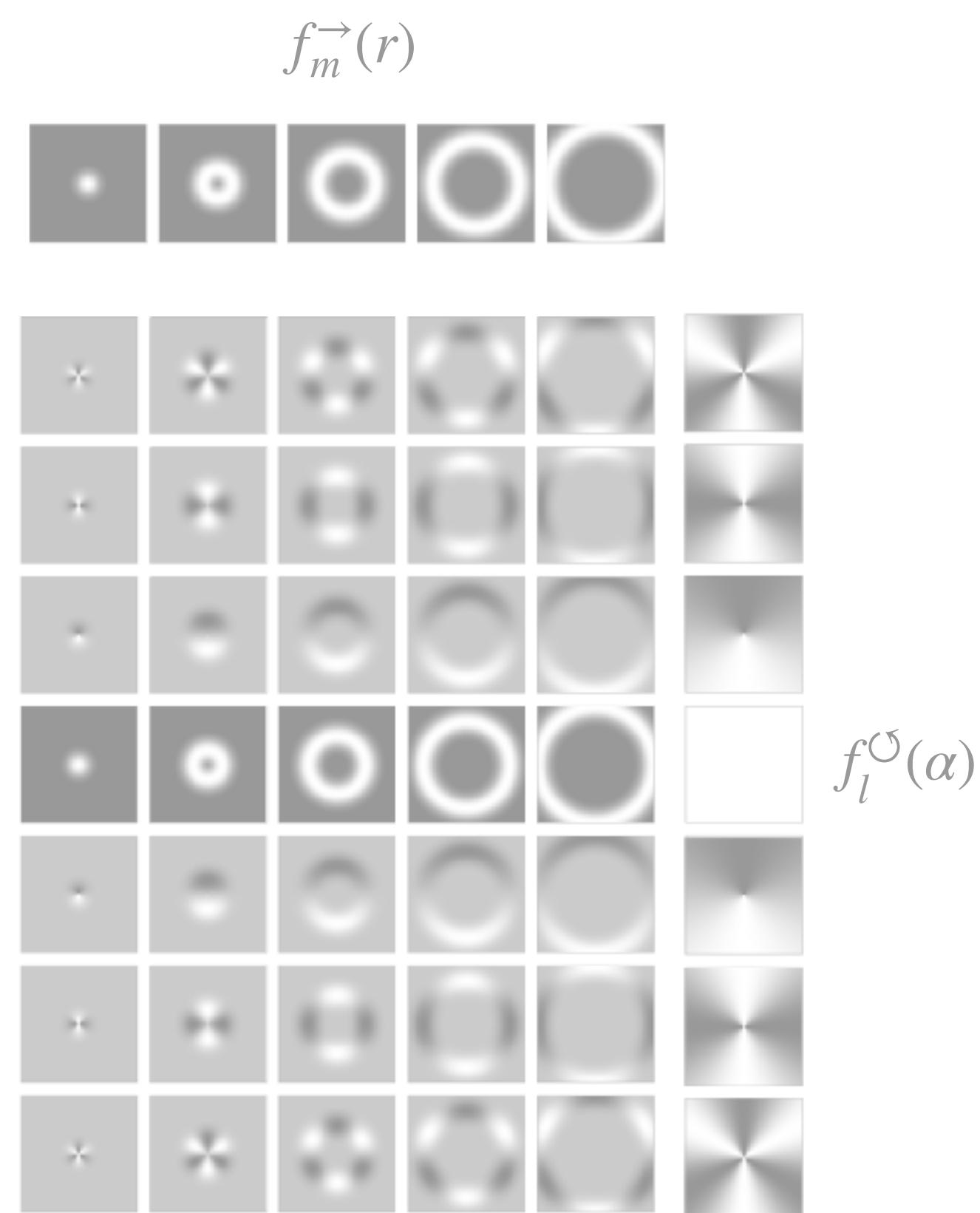
Representing interesting convolution kernels in a steerable basis!

Exercise:

1. Tune the weights $\hat{\mathbf{w}}$ until you get something interesting.
2. Add more detail by increasing maximum frequency!



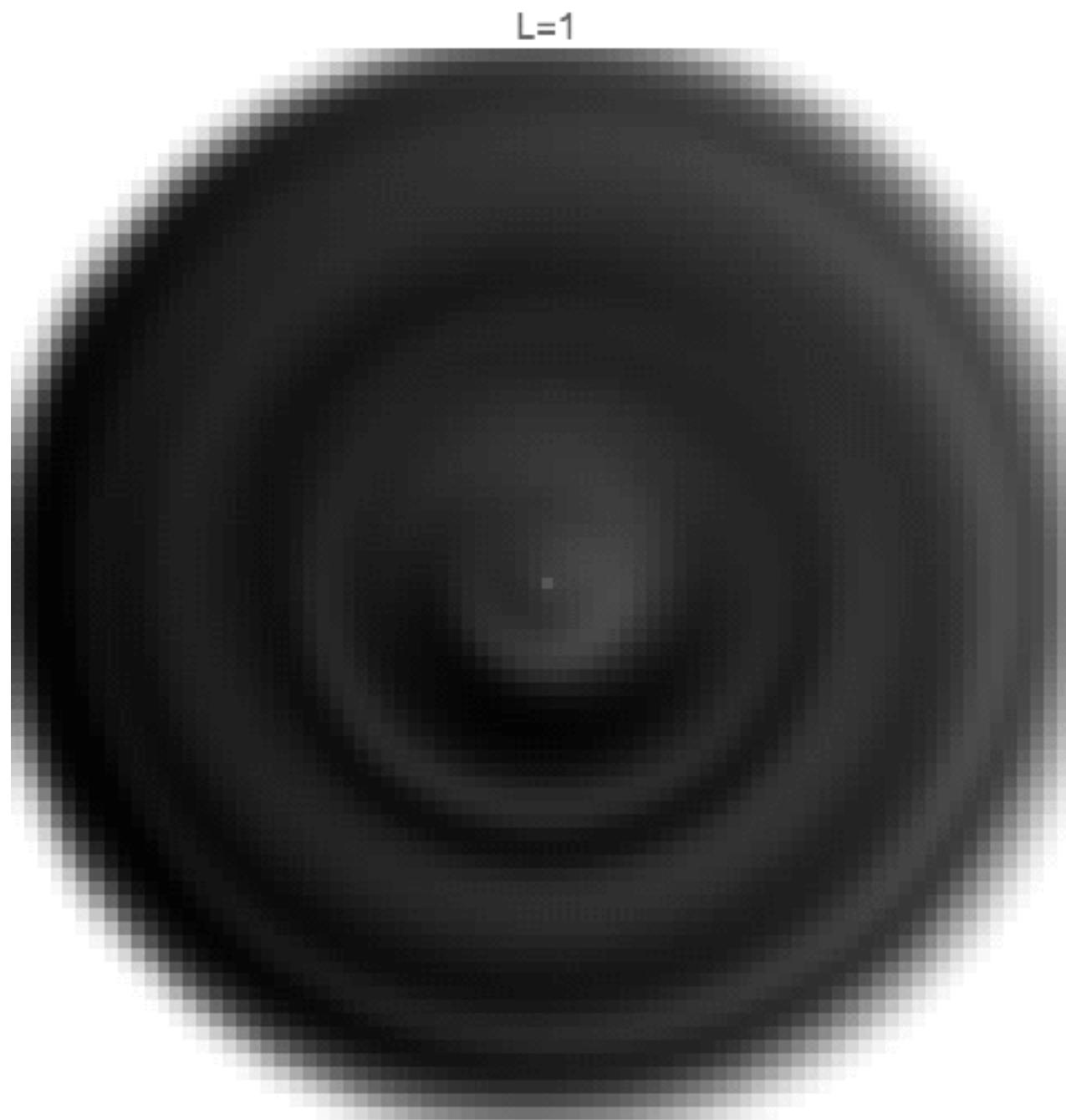
$$k(\mathbf{x} \mid \hat{\mathbf{w}}(r))$$



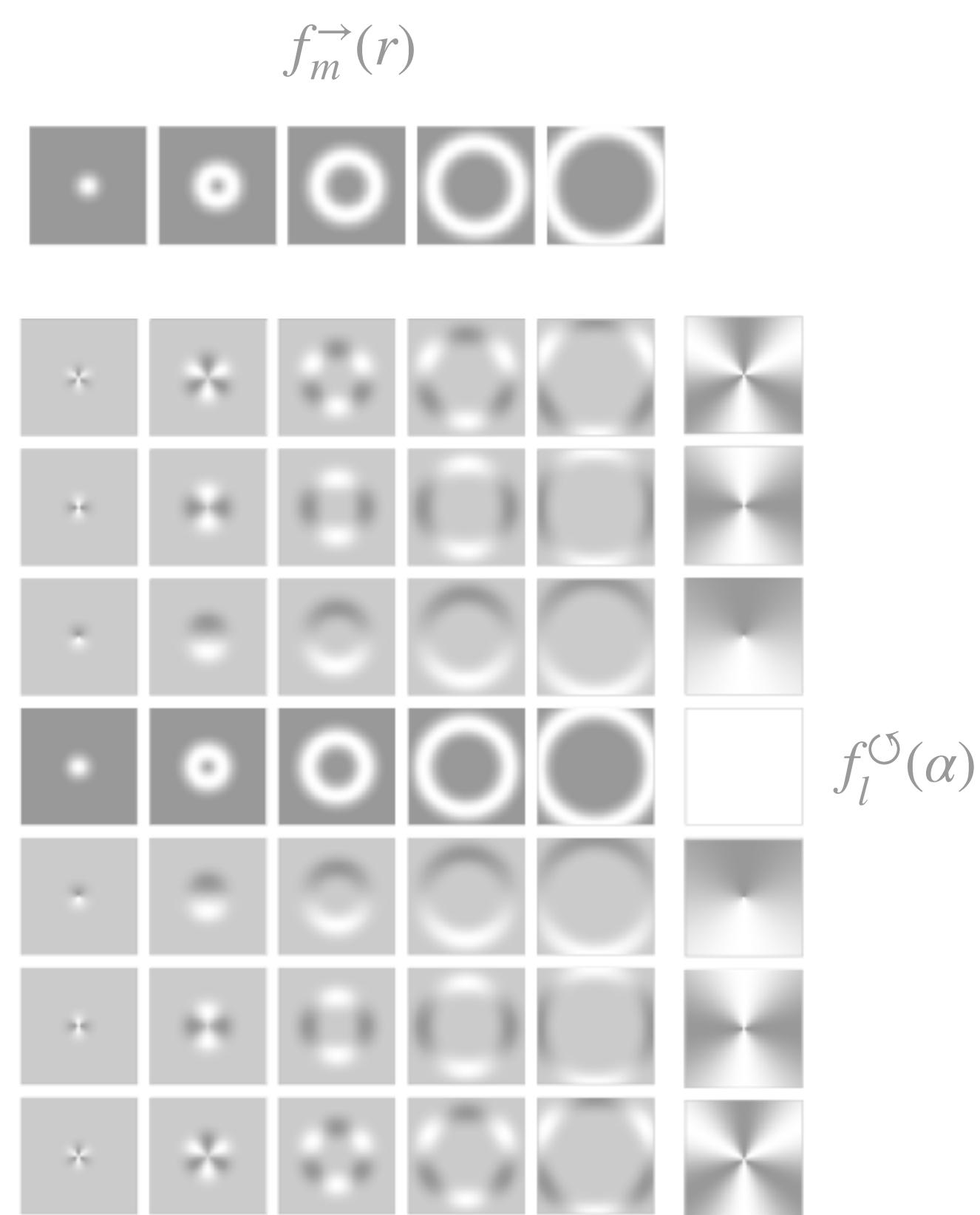
Representing interesting convolution kernels in a steerable basis!

Exercise:

1. Tune the weights $\hat{\mathbf{w}}$ until you get something interesting.
2. Add more detail by increasing maximum frequency!



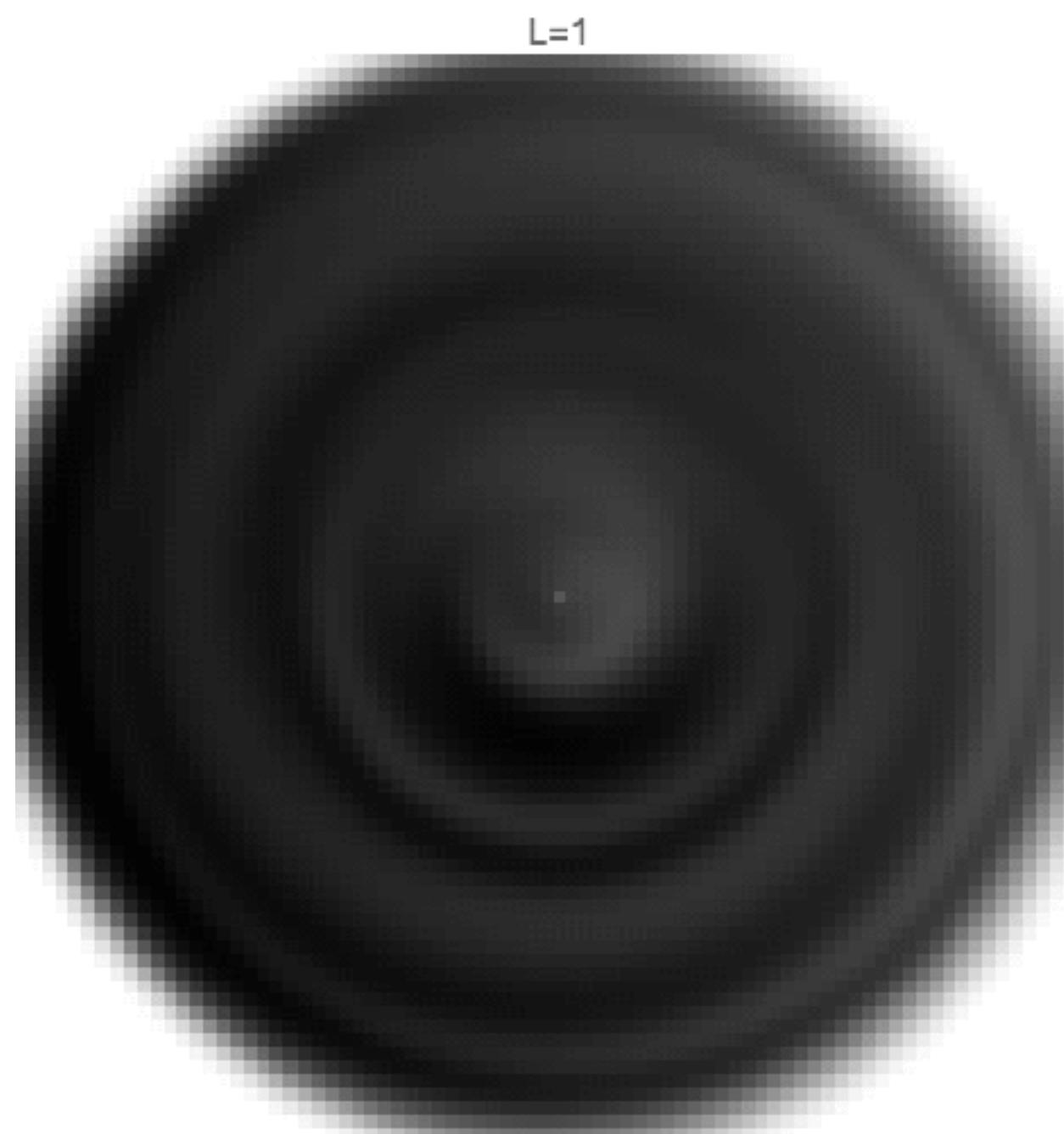
$$k(\mathbf{x} \mid \hat{\mathbf{w}}(r))$$



Representing interesting convolution kernels in a steerable basis!

Exercise:

1. Tune the weights $\hat{\mathbf{w}}$ until you get something interesting.
2. Add more detail by increasing maximum frequency!
3. Go crazy and **steer** it by transforming the weights!



$$k(\mathbf{x} \mid \hat{\mathbf{w}}(r))$$

$$k(\mathbf{x} \mid \rho(\theta)\hat{\mathbf{w}}(r))$$

